
AFTT/GCS/ENG/99M-02

A CONSTRUCTIVE INDUCTION APPROACH
TO COMPUTER IMMUNOLOGY

THESIS

Kelley J. Cardinale Hugh M. O'Donnell
Captain, USAF Second Lieutenant, USAF

AFJT/GCS/ENG/99M-02

Approved for public release; distribution unlimited

«»teMnajj 19990409 046

The views expressed in this thesis are those of the authors and do not reflect the official

policy or position of the Department of Defense or the U.S. Government.

AFTT/GCS/ENG/99M-02

A CONSTRUCTIVE INDUCTION APPROACH

TO COMPUTER IMMUNOLOGY

THESIS

Presented to the Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Kelley J. Cardinale, B.S.

Captain, USAF

Hugh M. O'Donnell, B.S.

Second Lieutenant, USAF

March 1999

Approved for public release; distribution unlimited

AFIT/GCS/ENG/99M-02

A CONSTRUCTIVE INDUCTION APPROACH

TO COMPUTER IMMUNOLOGY

Kelley J. Cardinale, B.S.

Captain, USAF

Hugh M,0'Donnell, B.S.

Second Lieutenant, USAF

Approved:

Lt Col Gregg H. Gunsch

GaryBdCamont

Lt Col Stuart C. Kramer

f Mni Tnhn S Pr Maj John S. Crown

Date

Date

Date

Date

Dedication

To those who kept us on our path to completion,

and to those who knew when to divert us.

Acknowledgments

We would like to express our appreciation to our thesis advisor, Lt Col Gregg Gunsch,

for pushing us out of our "comfort zones" during the thesis process. He allowed us the

independence to make our own mistakes, as well as experience our own triumphs. We would

also like to thank our committee members, Dr. Gary Lamont, Lt Col Stuart Kramer, and Maj John

Crown, for their contributions to this endeavor. We are also grateful to Dave Doak, for providing

us office space, disk space and much needed fish advice. We would especially like to thank our

family and friends for their constant motivation.

I would like to thank my parents for a lifetime of support and encouragement, especially

over the last eighteen months. Dad, your past AFTT experiences and humorous thesis stories

always gave me perspective. Don't forget, the registrar is still waiting for your GRE scores.

Mom, thank you for always seeing the light at the end of the tunnel, even when I didn't. I can

finally say, "Yes, Mom, I am finished with my thesis."

Kelley

I would like to thank my parents for the sacrifices they made; they are my inspiration. I

would also like to thank Erin for ensuring I paid attention to schedules and other trivialities. I

never did mind much about the little things. I also thank my brothers, Danny, Joe and James, for

ensuring that I never strayed too far from sanity and humility. Finally, this thesis effort would not

have been possible without the contributions of Arthur T. Guinness, Linus Torvalds and Gary

Fisher.

Hugh

Table Of Contents

ACKNOWLEDGMENTS •_• »

LIST OF TABLES ix

LIST OF FIGURES ri

ABSTRACT. .xui

1. INTRODUCTION *

1.1. MOTIVATION l

1.2. PROBLEM 5

1.3. RESEARCH OBJECTIVES 5

1.4. APPROACH
10

1.5. SCOPE 12

1.6. THESIS OVERVIEW 13

2. LITERATURE REVD2W 15

2.1. OVERVIEW 15

2.2. COMPUTER VIRUSES 16

2.2.7. Definition and Structure ^

2.2.2. Classification Methods *■'

2.2.3. Types • 18

2.2.3.1. File Infector 19

2.2.3.2. Boot Sector 21

• 2.2.3.3. Macro viruses *l

2.2.3.4. Network 22

2.2.3.5. Other Types • 22

2.3. ANTIVIRUS PROGRAMS 23

li

2.3.1. Purpose 24

2.3.2. Requirements 25

2.3.3. Types • 27

2.3.3.1. Scanners 27

2.3.3.2. Integrity Monitors 28

2.3.3.3. Behavior Blockers 29

2.4. MACHINE LEARNING METHODS 30

2.4.1. Inductive Learning *1

2.4.1.1. Components of Induction 32

2.4.1.2. Selective Induction 35

2.4.1.3. Constructive Induction 35

2.4.1.3.1. The Constructive Induction Process 36

2.5. MACHINE LEARNING APPLIED TO DETECTION AND RECOGNITION 38

2.5.1. Incremental Learning Applied to Computer Intrusion Detection 38

2.5.2. Neural Networks Applied to Computer Virus Detection 40

2.5.3. Genetic Algorithms Applied to Recognition in the Immune System 41

2.6. SUMMARY ■ 42

3. COMPUTER IMMUNE MODELS • 43

3.1. OVERVIEW 43

3.2. AN OVERVIEW OFTHE PUBLIC HEALTH SYSTEM 44

3.2.1. Functions of the Public Health System 44

3.2.1.1. Assessment 45

3.2.1.2. Policy Development 4^

3.2.1.3. Assurance 46

3.2.2. The Public Health System Framework. 46

3.2.2.1. Infrastructure as an Input 48

3.2.2.2. Essential Health Services as Practices 50

3.2.2.3. Health Care Delivery as a Practice 51

111

3.2.2.4. Prevention as a Practice 51

3.3. AN OVERVIEW OF THE HUMAN IMMUNE SYSTEM 52

3.3.1. Immune System Components 52

3.3.1.1. B Cells 53

3.3.1.2. TCells 54

3.3.1.3. Antigen Presenting Cells (APC) 55

3.3.1.4. Complement 56

3.3.2. Types of Immunity 56

3.3.2.1. Innate 57

3.3.2.2. Adaptive 58

3.3.3. Functions 60

3.3.3.1. Detection 60

3.3.3.2. Adaptation 60

3.3.3.3. Memory • 61

3.3.4. Human Immune Processes 62

3.3.5. Autoimmmunity "

3.4. COMPUTER IMMUNE SYSTEM RESEARCH 64

3.4.1. The Digital Petri Dish 65

3.4.2. Improving Computer Security 67

3.4.2.1. Intrusion Detection System (IDS) 69

3.4.2.2. Distributed Change Detection 71

3.4.3. Distributed Architecture for a Self-Adaptive CVIS 73

3.4.4. DARPA 's Public Health Infrastructure 77

3.5. THE COMPUTER MODELS 80

3.5.1. Model Building 80

3.5.2. Modeling a Computer Health System (CHS) 82

3.5.2.1. Computer Health System Objectives 84

3.5.2.2. Computer Health System Requirements 84

3.5.2.3. Computer Health System Services 87

IV

3.5.2.4. Computer Health System Functions 88

3.5.2.5. Computer Health System Components 89

3.5.2.5.1. Specialized Agencies 89

3.5.2.5.2. Virus Experts 90

3.5.2.5.3. Infrastructure 91

3.5.2.5.4. Computer Systems 92

3.5.3. Modeling a Computer Immune System 95

3.5.3.1. Functions 94

3.5.3.1.1. System Analysis 94

3.5.3.1.2. Detection 95

3.5.3.1.3. Adaptation... 96

3.5.3.1.4. Memory 98

3.5.3.1.5. Virus Elimination and System Repair 98

3.5.3.2. Autoimmunity "

3.5.3.3. Computer Immune System Interfaces 10°

3.6. SUMMARY 10°

4. SYSTEM DESIGN 102

4.1. OVERVIEW
102

4.2. GENERAL DESCRIPTION 103

4.3. OBJECTIVES 103

4.4. REQUIREMENTS 104

4.5. ARCHITECTURE 105

4.6. DESCRIPTION OF SUBSYSTEMS 106

4.6.1. Constructive Induction Engine (EEC) 106

4.6.2. Virus Scanner. 108

4.6.3. Knowledge Base 110

4.7. DYNAMIC STRUCTURE OF MERCURY ■ 110

4.8. DESCRIPTION OF DATA FLOW 115

4.9. SYSTEM INTEGRATION AND TESTING 116

4.10. SUMMARY • 118

SYSTEM IMPLEMENTATION • 120

5.1. OVERVIEW 120

5.2. DEFINITIONS 120

5.3. CONSTRUCTION INDUCTION ENGINE 122

5.5.7. Hypothesis Generation 122

5.3.1.1. Hypothesis 123

5.3.1.2. Example Set 124

5.3.1.3. Selection Rules 125

5.3.1.3.1. Bias 127

5.3.1.3.2. Process / Algorithm 127

5.3.1.3.3. Computational Complexity I28

5.3.1.4. Hypothesis Construction I28

5.3.1.4.1. Constructive Operators I29

5.3.1.4.2. Bias 132

5.3.1.4.3. Generation Grammar 134

5.3.1.4.4. Process / Algorithm 135

5.3.1.4.5. Computational Complexity 137

5.3.2. Hypothesis Evaluation 138

5.3.2.1. Scoring 138

5.3.2.2. Coverage 143

5.3.2.3. Process / Algorithm 144

5.3.2.4. Computational Complexity I45

5.3.3. Hypothesis Ordering I45

5.3.3.1. Hypothesis Growth • 146

5.3.3.2. Nondominated Set I48

5.3.3.3. Process / Algorithm I51

5.3.3.4. Computational Complexity I52

VI

5.3.4. Hypothesis Incorporation 152

5.4. KNOWLEDGE BASE INTERFACE • 153

5.5. SCANNER 154

5.5.1. Reading Detectors ^4

5.5.2. Determining Files to Scan 154

5.5.3. Determining Classification of File 155

5.5.3.1. Detecting Unknown Files 155

5.5.3.2. Detecting Self Files 156

5.5.3.3. Detecting Nonself Files 156

5.5.3.4. Detecting Previously Unseen Inferiors I57

5.6. DEVELOPMENT PROCESS 157

5.7. SUMMARY 159

6. ANALYSIS AND RESULTS 160

6.1. INTRODUCTION 160

6.2. TEST CASES 161

6.3. TIME 163

6.4. SPACE 165

6.5. POWER AND PURITY 17°

6.5.1. Laboratory Test Cases 171

6.5.2. Operational Test Cases 177

6.6. COVERAGE • •• 182

6.7. PROCESS OPTIMIZATION THROUGH RESPONSE SURFACE METHODOLOGY TECHNIQUES 184

6.7.7. Analyzing the Distribution of Data 188

6.7.2. Analyses on Test Cases 9 through 11 191

6.7.2.1. Preliminary Analyses 191

6.7.2.2. Regression Analyses • 199

6.7.3. Utilizing Process Optimization 204

Vll

6.7.4. RSM Conclusions 205

6.8. SUMMARY • 205

7. CONCLUSIONS 207

7.1. RESEARCH OVERVIEW 207

7.2. RESEARCH HYPOTHESES 208

7.3. RESEARCH IMPLICATIONS 21*

7.4. RESEARCH LIMITATIONS 212

7.5. FUTURE RESEARCH 213

7.5.i. Computer Immunology 275

7.5.2. Machine Learning 2i4

7.5.3. Virus Detection 217

APPENDIX A - SOURCE CODE 219

BIBLIOGRAPHY 220

VITAS. .224

Vlll

List of Tables

TABLE 1--CLASSIFICATION OF VIRUSES 18

TABLE 2 -- PUBLIC HEALTH SYSTEM COMPONENTS 47

TABLE 3 -- PUBLIC HEALTH INFRASTRUCTURE COMPONENTS 49

TABLE 4-IMMUNE SYSTEM LYMPHOCYTES 53

TABLE 5 - TYPES OF IMMUNITY 59

TABLE 6--IMMUNE SYSTEM FUNCTIONS 61

TABLE 7 -- IMMUNE SYSTEM PROCESSES 62

TABLE 8 - HIGHLIGHTED FEATURES OF THE DIGITAL PETRI DISH 67

TABLE 9 - HIGHLIGHTED FEATURES OF THE INTRUSION DETECTION SYSTEM 71

TABLE 10 -- HIGHLIGHTED FEATURES OF THE DISTRIBUTED CHANGE DETECTION 73

TABLE 11-HIGHLIGHTEDFEATURES OFTHECVIS 76

TABLE 12 - HIGHLIGHTED FEATURES OFDARPA'S PUBLIC HEALTH INFRASTRUCTURE 79

TABLE 13-SUMMARY OF MODEL TYPES 82

TABLE 14-COMPARISON OF HEALTH SYSTEM OBJECTIVES 84

TABLE 15 - MERCURY'S OBJECTIVES 104

TABLE 16 - SELECTION RULES 125

TABLE 17 - POSSIBLE MEASUREMENTS FOR HYPOTHESIS EFFECTIVENESS 140

TABLE 18 - TEST CASES 1 - 8 • 162

TABLE 20 - TEST CASES 9-11 • 163

TABLE 21 - SUMMARY OF RESULTS FOR TEST CASES 1- 8 176

TABLE 22 - SUMMARY OF RESULTS FOR TEST CASES 9-11 181

TABLE 23 - RSM INPUT VARIABLES 186

TABLE 24 - RSM RESPONSE VARIABLES I87

TABLE 25-TEST FOR NORMALITY 189

TABLE 26 - TESTS THAT THE VARIANCES ARE EQUAL ACROSS OPERATORS 190

TABLE 27 - TESTS THAT THE VARIANCES ARE EQUAL ACROSS METHODS 190

TABLE 28 - TESTS THAT THE VARIANCES ARE EQUAL ACROSS LABELS 190

TABLE 29 - WILCOXON/KRUSKAL-WALLIS FOR DIFFERENCES IN POWER ACROSS TEST CASES 193

TABLE 30 - WILCOXON/KRUSKAL-WALLIS FOR DIFFERENCES IN POWER ACROSS OPERATORS 194

TABLE 31 - WILCOXON/KRUSKAL-WALLIS FOR DIFFERENCES IN POWER ACROSS METHODS 195

IX

TABLE 32 - WILCOXON/KRUSKAL-WALLIS FOR DIFFERENCES IN POWER ACROSS LABELS 196

TABLE 33 - WILCOXON/KRUSKAL-WALLIS FOR DIFFERENCES IN POWER ACROSS FOUR OPERATORS 197

TABLE 34 - ANALYSIS OF VARIANCE (ANOVA) TABLE FOR THE POWER MODEL 199

TABLE 35 - EFFECT TEST FOR THE POWER MODEL 201

TABLE 36 - REGRESSION INFORMATION FOR THE POWER MODEL 202

TABLE 37-LEAST SQUARES MEANS FOR THE OPERATORS 203

TABLE 38 - LEAST SQUARES MEANS FOR THE METHODS 203

TABLE 39 - LEAST SQUARES MEANS FOR THE LABELS 203

List of Figures

FIGURE 1- RESEARCH DOMAINS 6

FIGURE 2 - THE COMPUTER HEALTH AND COMPUTER IMMUNE RELATIONSHIP 11

FIGURE 3-THE PUBLIC HEALTH FRAMEWORK 48

FIGURE 4 -PICTORIAL REPRESENTATION OF THE DIGITAL PETRI DISH 67

FIGURE 5 - PICTORIAL REPRESENTATION OF THE INTRUSION DETECTION SYSTEM 70

FIGURE 6 - PICTORIAL REPRESENTATION OF THE DETECTOR GENERATION 72

FIGURE 7 - PICTORIAL REPRESENTATION OF THE SELF-ADAPTIVE CVIS 75

FIGURE 8 - PICTORIAL REPRESENTATION OF THE COMPUTER HEALTH SYSTEM 83

FIGURE 9 - SYSTEM HIERARCHY 107

FIGURE 10--MERCURY'S DYNAMIC STRUCTURE m

FIGURE 11 - HEC'S DYNAMIC STRUCTURE J M

FIGURE 12 -- MERCURY'S DATAFLOW DIAGRAM n6

FIGURE 13--MERCURY'S INTEGRATION 117

FIGURE 14 -- SELECTION RULES 126

FIGURE 15 -- ALGORITHM FOR SELECTIVE INDUCTION 127

FIGURE 16 -PICTORIAL REPRESENTATION OF THE AND OPERATOR 129

FIGURE 17-PICTORIAL REPRESENTATION OF THE OR OPERATOR 13°

FIGURE 18 -PICTORIAL REPRESENTATION OF THE XOR OPERATOR 130

FIGURE 19 - PICTORIAL REPRESENTATION OF THE BEFORE OPERATOR 131

FIGURE 20 - PICTORIAL REPRESENTATION OF THE DISTANCE OPERATOR 131

FIGURE 21 -ALGORITHM FOR CONSTRUCTING HYPOTHESES 137

FIGURE 22 - DEPICTION OF OPTIMAL SCORES ul

FIGURE 23 - EXAMPLE OF CALCULATED SCORES 142

FIGURE 24 - ALGORITHM FOR HYPOTHESIS EVALUATION I44

FIGURE 25 - COMPLEXITY CAUSED BY NUMBER OF CONSTRUCTIONS 148

FIGURE 26 - HYPOTHESIS EVALUATION METHOD USING BINS 150

FIGURE 27 - ALGORITHM FOR HYPOTHESIS ORDERING 151

FIGURE 28 - HYPOTHESES GENERATION TIME FOR TEST CASES 1-8 164

FIGURE 29 - HYPOTHESES GENERATION TIME FOR TEST CASES 9-11 • 165

FIGURE 30 - COMPOSITION OF HYPOTHESES GENERATED BY SELECTION FOR TEST CASES 1-8 166

FIGURE31 -COMPOSITION OF HYPOTHESES GENERATED BY CONSTRUCTION FOR TEST CASES 1-8 167

FIGURE 32 - OPERATOR COMPOSITION OF CONSTRUCTED HYPOTHESES FOR TEST CASES 1 - 8 168

XI

FIGURE 33 - OPERATOR COMPOSITION OF CONSTRUCTED HYPOTHESES FOR TEST CASES 9-11 168

FIGURE 34 -- NUMBER OF HYPOTHESES GENERATED FOR TEST CASES 1 - 8 169

FIGURE 35 - NUMBER OF HYPOTHESES GENERATED FOR TEST CASES 9-11 169

FIGURE 36 - AVERAGE SELECTION SCORES FOR POWER FOR TEST CASES 1 - 8 172

FIGURE 37 - AVERAGE SELECTION SCORES FOR PURITY FOR TEST CASES 1 - 8 172

FIGURE 38 ~ AVERAGE CONSTRUCTION SCORES FOR POWER FOR TEST CASE 1 - 8 174

FIGURE 39 -- AVERAGE CONSTRUCTION SCORES FOR PURITY FOR TEST CASE 1 - 8 174

FIGURE 40 - AVERAGE OPERATOR SCORES FOR POWER FOR TEST CASES 1 - 8 175

FIGURE 41 -- AVERAGE OPERATOR SCORES FOR PURITY FOR TEST CASES 1 - 8 175

FIGURE 42 -- AVERAGE SELECTION SCORES FOR POWER FOR TEST CASES 9 -11 178

FIGURE 43 - AVERAGE CONSTRUCTION SCORES FOR POWER FOR TEST CASES 9 -11 179

FIGURE 44 - AVERAGE OPERATOR SCORES FOR POWER FOR TEST CASES 9-11 180

FIGURE 45 -- COVERAGE FOR TEST CASES 1 - 8 183

FIGURE 46-COVERAGE FOR TEST CASES 9-11 • ••••■183

FIGURE 47 - DISTRIBUTION OF RESIDUALS 191

FIGURE 48 - PICTORIAL VIEW OF POWER ACROSS TEST CASES 193

FIGURE 49 - PICTORIAL VIEW OF POWER ACROSS OPERATORS 194

FIGURE 50 -- PICTORIAL VIEW OF POWER ACROSS METHODS 195

FIGURE 51 --PICTORIAL VIEW OF POWER ACROSS LABELS 196

Xll

AFTT/GCS/ENG/99M-02

Abstract

With the increasing birth rate of new viruses and the rise in interConnectivity and

interoperability among computers, the burden of detecting and destroying computer

viruses is severe. This research integrated four different domains: computer virus

detection, human immunology, computer immunology and constructive induction. First,

a Computer Health System, based on the public health system, was defined that could

possibly improve the current "global" approach to computer virus protection. Second, a

computer immune model, based on the human immune system, was defined that could

possibly improve the current "local" approach to virus detection. Third, the detection

component of this computer immune model was developed, represented by the prototype

MERCURY. This model utilized the machine learning concept of constructive induction

to capture the human immune characteristics of detection, self-adaptation and memory.

The results of analyzing MERCURY demonstrate a lack of representational

power of computer virus byte patterns using selective induction. Therefore, constructive

induction is needed to provide new, potentially powerful, and often necessary

representations. However, the results confirmed constructive induction's main

deficiency, the explosion in the number of hypotheses generated. The effects of this

deficiency can be improved by utilizing key pieces of knowledge to guide construction.

Process optimization through statistical techniques, provides direct insight into these key

pieces of knowledge. Knowledge about the virus domain, such as characteristics of

typical viruses and regularities in the byte patterns, also provides guidance for effective

construction.

Xlll

A CONSTRUCTIVE INDUCTION APPROACH

TO COMPUTER IMMUNOLOGY

1. Introduction

1.1. Motivation

The vision for the 21st Century Air Force includes aggressively expanding the

efforts in information warfare, both offensively and defensively. The top priority is to

defend capabilities in this arena by continuing to build up the defense of computer

systems and improve our tactical and operational information warfare capabilities. With

the Air Force's increasing rate of computer dependency, the threat of computer viruses is

a rapidly growing concern.

Computer viruses have been a growing concern since the early 1980s [FHS97].

To combat this problem, various antivirus programs have been created; however, the

burden of detecting and destroying viruses is still severe. Two trends are inhibiting the

effectiveness of current antiviral techniques: the increasing birth rate of new viruses and

the rise in interconnectivity and interoperability among computers [Kep94]. Current

techniques are reactive, labor intensive for virus researchers, have a slow response from

time of discovery until the cure is prescribed, and require user intervention to update the

virus signature database. Improving current antiviral techniques can combat these

problems [Kep94].

Based on several properties of the human immune system, computer scientists

hope new techniques to fight computer viruses will emerge. They believe that the human

immune system has several useful characteristics for detecting computer viruses. These

properties provide a robust, flexible and scalable system resilient to attack and a fresh

perspective on computer viruses and other security problems [FHS97].

Human immune systems are unique, meaning individual immunity is derived and

adapted differently; this is a desirable and applicable property of a computer system, as

well. The immune system uses a decentralized and distributed detection process, also of

interest in the virus detection domain. The human system is very flexible and does not

require the absolute detection of every invader; instead, partial detection allows for

quicker recognition of multiple invaders. In a computer system, this is similar to the use

of byte pattern signatures as partial detectors for locating an infected file on a computer

system.

Another very important feature of the immune system is its ability to detect and

react to invaders, or "nonself," while not inappropriately detecting what belongs in the

body, or "self." This property applies to invaders that have been previously seen, as well

as those previously unseen. The human system can learn the structures of these

previously unseen invaders and remember them, so that the body's future responses to the

same invader can be faster.

These last three human immune properties of detection, adaptation, and memory

are the most important throughout this research. These strengths of the human immune

system are the foundation for the development of a new antivirus detection method,

investigated in this research.

Drawing on some of the strengths of the human system, other researchers have

proposed computer immune models. These computer immune models incorporate many

of the positive aspects of current antiviral techniques while introducing improvements

such as automatic distribution of viral prescriptions, automatic recognition and removal

of viruses, and protection of self [MVL98]. These models each provide an overall

approach to an aspect of computer immunology, but do not always give a full picture that

includes virus detection on an individual system.

The research conducted in our investigation presents two computer models. The

first model provides a "global approach" to computer health by incorporating individual

computer systems through a computer health infrastructure. The second model provides

a "local approach" to computer health by utilizing a method of virus detection, based on

the properties of the human immune system.

To properly model this individual detection system after the human immune

system, a learning mechanism is required for the adaptation property. This mechanism

provides an automated method for distinguishing between positive and negative instances

of self that defines the overall concept of self. This learning mechanism is adaptive since

it allows the definition of self to change; it "learns" by incorporating new viruses,

representing nonself, into this definition.

The specific learning mechanism utilized in this research is based on a form of

machine learning called constructive induction. This mechanism derives knowledge

from the observation of positive and negative examples of a concept, in this case, self.

This type of learning attempts to characterize the concept by creating a description that

captures the essence of the concept while distinguishing it from the counterexamples.

This is accomplished by carefully selecting from the original attributes describing the

examples and, when necessary, constructs new, more useful, attributes. This form of

learning provides a mechanism for learning meaningful descriptions of complex data,

such as distinguishing between self, those components authorized as part of the system,

and nonself that does not belong on a computer system.

Analogies between the human immune system and the computer immune system

can be derived through constructive induction. Both systems create potential detectors

for identifying invaders. There are differences, though. The body can afford to retain

billions of detectors for "future use," and the inherently parallel nature of cellular activity

allows constant testing against substances without performance degradation. The

computer cannot maintain and test a large number of detectors without a loss in system

performance. To create a practically useful system, complex detectors must be induced

through the selection of byte patterns and the application of operators defining their

interrelationships. Unsuitable or repetitive detectors are filtered out through testing.

Other machine learning approaches, such as evolutionary algorithms and neural

networks, also entail the necessary properties of construction and induction. Since they

can be shown to perform "limited" construction based upon their sets of operators, this

research focuses on the more general and deterministic learning program known as

constructive induction.

1.2. Problem

Due to the lack of an adaptation mechanism, many virus detection methods are

insufficient at the individual system level. In addition, the global approach to computer

health is inadequate. Though several immunological approaches have been studied,

many lack a mechanism for the adaptive detection of viruses on an individual computer

system. This research proposed utilizing the machine learning mechanism of

constructive induction for the adaptive detection. However, the most difficult issue faced

by constructive induction, as a field of machine learning, is the selection of the most

useful operator-attribute combinations. These combinations create a computational

explosion, necessitating the use of a priori knowledge to make the learning process more

efficient.

1.3. Research Objectives

This research integrated four different domains, depicted in Figure 1: computer

virus detection, human immunology, computer immunology and constructive induction.

First, a Computer Health System, based on the public health system, was defined that

could possibly improve the current "global" approach to computer virus protection.

Second, a computer immune model, based on the human immune system, was defined

that could possibly improve the current "local" approach to virus detection. Third, the

detection component of this computer immune model was developed, represented by the

prototype MERCURY. This model utilized the machine learning concept of constructive

induction to capture the human immune characteristics of detection, self-adaptation and

memory.

Virus
Detection

Computer
Immunology

A Computer
Health System

and

A Computer
Immune System

Human
Immunology

Constructive
Induction

ive £

n \

Figure 1 ~ Research Domains

The work accomplished as part of this investigation tested the following primary

hypotheses:

Primary Hypotheses

1. The public health system is a useful model for a Computer Health

System for the global protection of computer system against viruses

2. The human immune system is a useful model for a virus detection

system on an individual computer system

3. Constructive induction provides a suitable learning mechanism

for the virus detector system of an individual computer system

The first two objectives of this research were to test the first two hypotheses to

determine if the public health system and the human immune system were useful models

for a Computer Health System and computer immune system, respectively. To

accomplish this objective, research in the areas of public health and human immunology

was conducted. The requirements, objectives and components of the models were also

evaluated. Both computer models are informal, explanatory models based on some

essential qualities of their respective systems. Due to the models' informalities, though,

not all of their aspects were explicitly stated.

The third objective of this research was to empirically test the third hypothesis.

This objective investigated whether constructive induction was suitable for virus

detection in a computer immune system. Testing was conducted utilizing MERCURY.

While MERCURY captures the essence of constructive induction, it does not fully

employ all the characteristics of a complete inductive engine. Therefore, based on the

empirical analysis of MERCURY'S results, the hypothesis that constructive induction

provides a suitable learning mechanism for the virus detector system of an individual

computer system can not be accepted or rejected. Rather, the results of these tests

provided empirical evidence and analytical knowledge that could make the learning

process more efficient. Since the main disadvantage of constructive induction is its

computational explosion, these results provided mathematically based methods which

could decrease its computational complexity. These methods could improve the

capabilities of a fully developed constructive induction based virus detector, by providing

knowledge about the problem domain and the system parameters a priori. To confirm

these findings, a process optimization simulation was conducted to demonstrate the

effectiveness of a priori knowledge applied to the virus detection problem.

The third hypothesis was decomposed into smaller, more manageable, sub-

hypotheses. The first sub-hypothesis was the Virus Feature Hypothesis:

Virus Feature Hypothesis

Byte patterns can be used as the basis of a

constructive induction based computer virus detector.

This hypothesis captured the belief that byte patterns extracted from computer

files are "adequate" features for distinguishing between positive and negative instances of

self, defining the overall concept of self, and adapting to a changing definition of self.

Current virus knowledge [KeA94] concludes that the use of byte patterns is an effective

method for detecting a broad variety of conceivable mutations for a particular virus with

a low false positive probability. To confirm this, MERCURY'S learning component was

programmed to extract, manipulate, and test byte patterns from various files. Testing

concluded that the learning component, using features composed of byte patterns, was

able to distinguish between self and nonself files with varying degrees of accuracy.

Therefore, it can be concluded that byte patterns can be used as the basis of a constructive

induction based computer virus detector.

The second sub-hypothesis was the Constructive Operator Hypothesis:

Constructive Operator Hypothesis

Logical and spatial operators can be used for

constructing new attributes for the computer virus detector.

This hypothesis validated that the choice of operators was "adequate" to construct

new features, better distinguishing between infected and uninfected data. Current virus

knowledge [KeA94] confirms the applicability of using relative and absolute locations of

virus characteristics in a file, and the presence of multiple virus characteristics throughout

one file to detect viruses. To confirm this, MERCURY'S learning component was

programmed to manipulate the byte patterns from various files based on two types of

operators, logical and spatial. The logical operators AND, OR and XOR accounted for

multiple, or restricted virus characteristics, whereas the spatial operators BEFORE and

DISTANCE accounted for the positions of virus characteristics. Testing concluded that

the learning component, using logical and spatial operators, was able to distinguish

between self and nonself files with varying degrees of accuracy. Therefore, it can be

concluded that logical and spatial operators can be used for constructing new features for

the computer virus detector.

The two sub-hypotheses are not independent. A stable definition of self, and the

ability to distinguish between self and nonself are dependent on a combination of virus

features and constructive operators. The difficulty of this problem is large due to the

complexity caused by increasing the number of operators, features or both. The

combination of these system parameters results in a large number of constructed

attributes; therefore, some limitations were established. Evaluating these two sub-

hypotheses separately and together resulted in a more effective basis for supporting the

primary hypothesis. More importantly, the results of these sub-hypotheses provide the

empirical analysis needed to improve the effectiveness of the overall learning process.

1.4. Approach

This research contained three phases: model building, prototype development, and

testing and analyses. The first phase built two computer models, the Computer Health

System and the individual computer immune system. This modeling derived, by analogy,

the important properties, functions, and requirements for the two computer models from

the public health system and human immune system, respectively. The relationship

between the two models is depicted in Figure 2.

10

^R* Computer Health System |

Virus Specialized
Experts '1* Agencies

1
Individual

System

I k
\

\

\

Computer Virus

01010111
01101010
10110101
11010101

1/

=*

Self

£ im

\
\

X

s

^^
(Computer Immune System

Figure 2 - The Computer Health and Computer Immune Relationship

Once modeling phase was complete, the second phase designed and developed the

prototype MERCURY, capturing the essence of the individual computer immune model.

MERCURY encompasses the human immune properties of detection, adaptation, and

memory, and is comprised of three components: the virus scanner; the learning engine,

HEC; and the knowledge base.

The third phase included the testing and analyses of MERCURY. This system

was trained on several computer files representative of self and nonself files on a

11

computer. The expected output was a set of byte patterns that could distinguish between

self and nonself files. Testing of MERCURY was accomplished through two groups of

test cases. The first group tested whether byte patterns, the rules combining the byte

patterns, and the constructive operators used to construct new features from these byte

patterns were applicable in the constructive induction approach to virus detection. The

second group tested whether constructive induction provides a suitable learning

mechanism for the virus detector system of an individual computer system. Additionally,

the overall results were studied in order to focus this learning method, reducing its

computational complexity.

1.5. Scope

There are two methods of infection in the human body, intracellular and

extracellular. Intracellular infections in the body are similar to abnormal byte patterns in

a file since determination of an infection requires the "extraction" of information from a

computer's version of a cell, the file. Conversely, extracellular infections, which are not

attributed to a specific cell, are analogous to the detection of viruses through heuristic

tests and analyses of system calls and abnormal system activity. MERCURY focused on

the intracellular type of infection in the computer immune system, based on the method

in which the virus infects the file, and the system's response to the infection.

Instead of focusing efforts on implementing a fully operational virus detection

component, the focus of this research was the application of constructive induction to the

12

virus detection domain. This research investigated the design and initial development of

the adaptation mechanism based on this from of machine learning. This initial

development included the choice of distinguishing features, selective induction rules, and

constructive induction operators. Additionally, this research focused on improving the

computational complexity of the learning process, in order to increase the applicability of

this form of learning.

This research recognized specific machine learning improvements that could be

applied to current methods of virus detection, in order to improve performance. It also

presented the incorporation of this constructive induction component into an individual

computer's immune system, and further incorporated this system into an overall global

picture of computer health.

1.6. Thesis Overview

During this investigation, two computer immune models were presented: the

Computer Health System and the computer immune system. MERCURY, the virus

detection component of an individual computer immune system, was prototyped by

integrating a constructive induction engine, HEC, with a virus scanning program, and a

knowledge base.

This document provides a discussion of this research effort, beginning in Chapter

Two with a literature review of viruses, virus detection methods, constructive induction,

and machine learning applications. Chapter Three provides an overview of the human

13

immune system and the public health system, presents previous research in the area of

computer immunology, introduces the models of the Computer Health System and the

computer immune system, and presents the virus detection component, MERCURY.

Chapter Four provides insight into MERCURY'S design methodology, followed by a

detailed discussion of its design and implementation in Chapter Five. Chapter Six

presents the results of the system testing. Finally, Chapter Seven presents the conclusion

that a constructive induction approach to computer immunology could improve computer

virus detection. Additionally, Chapter Seven presents the conclusion that a computer

immune system should be recognized and incorporated as a valuable component in a

higher-level Computer Health System. This chapter also provides areas for future

research within the various domains of computer immunology, machine learning, and

virus detection.

14

2. Literature Review

2.1. Overview

This chapter presents the background knowledge needed to develop the

constructive induction based computer virus detection component, MERCURY. The first

section introduces computer viruses by describing their function and structure, and

reviewing the different types of viruses known to infect computer systems today. The

next section elaborates on the current methods used for virus detection and pinpoints

some of their inadequacies. The last sections describe various machine learning methods,

specifically the method of constructive induction used by MERCURY, as well as current

research trends, which use other types of machine learning in computer security and

intrusion detection applications.

Chapter Three provides additional background knowledge in human immunology

and public health needed to build the two computer models. It presents the Computer

Health System, and the computer immune system of which MERCURY is a component.

15

2.2. Computer Viruses

Solid technical knowledge is the foundation for all viral defenses [Lud98]. To

build an effective virus detector, an understanding of virus structure, function and

behavior is needed. The following sections describe computer viruses by classifying the

different types commonly encountered today, defining their functions, and examining

their different structures and infection methods.

2.2.1. Definition and Structure

A computer virus is a block of executable code that attaches itself to, overwrites,

or replaces another program in order to reproduce itself without the knowledge of the

user [NCSA96]. Computer viruses replicate by attaching to a host, usually a program or

computer, and utilizing the host's resources to make copies of themselves. Computer

viruses spread from computer to computer, in the same way that biological viruses spread

among individual members of society [KSCW97].

A typical computer virus performs two functions. First, it copies itself into

previously uninfected programs or files. Second, it executes the payload, or the intent of

the virus. Common viral payload effects include deleting files, modifying files,

displaying messages on-screen, or updating programs. Payloads can be damaging,

amusing, or possibly even useful, but nevertheless unwanted and uncontrolled. A virus

may cause damage by replicating itself and taking up scarce resources, such as disk

16

space, CPU time, or network connections [WCC89]. A virus requires manual

intervention to begin its infection, but will continue to automatically infect programs

once it is started [Che97].

Every computer virus contains must contain at least two routines, search and copy

[Lud98]. The search routine locates new files or disks as targets for infection, determines

which resource to infect and how often infection will occur. The virus' copy routine

copies the virus into the resource, located by the search routine. There is a size vs.

functionality tradeoff, though; the more sophisticated these routines are, the more space

they will take up, easing detection.

In addition to these two routines, some computer viruses contain anti-detection

routines. These routines vary in complexity, from keeping the date in a file the same

upon infection to camouflaging the virus completely. Most viruses may contain

destructive routines, which carry out the possibly malicious "intent" of the virus. [Lud98]

2.2.2. Classification Methods

Viruses can be classified according to the following characteristics: environment,

operating system, different algorithms at work, and destructive capabilities. The

following table provides a cursory overview of these types.

17

Table 1 - Classification of Viruses

a
§ s

.2

C
1

File
Infector Viruses

Boot
Sector Viruses

Macro Viruses

Network
Viruses

TSR Capability

Stealth
Algorithms

Self Encryption
and

Polymorphic
Capability

Non-standard
Techniques

Harmless

Not Dangerous

Dangerous

Very Dangerous

Infect executables in various ways, create file doubles, or use file
system specific features.
Save themselves in the disk boot sector or to the Master Boot
Record, or change the pointer to an active boot sector.
Infect document files, spreadsheets and databases of several
popular software packages ~

Use protocols and commands of computer network or email to
spread themselves.
Infects a computer and leaves its resident part in RAM, which
interrupts system calls to target objects and incorporates into them.
Allows viruses to completely or partially cover their traces inside
the operating system. The most common use is the interception of
operating read/write calls to infected objects; stealth viruses
"substitute themselves with uninfected pieces of information.
Hard to detect due to absence of signatures; none of their code
fragments remain unchanged. This may be achieved by encrypting
the main body of the virus and making modifications to the
decryption routine.
Used to hide viruses deep within the operating system kernel;
protects against detection and more difficult to remove.
Have no effect on computing, except for a lowering of free space
because of propagation and reduction in CPU utilization.
Limit their effect to lowering free disk space and a few graphical,
sound or other functions.
Can seriously disrupt the computer's work.
Contain routines that may lead to the loss of data, data destruction,
and erasure of vital information in system areas.

2.2.3. Types

Further classification of computer viruses can be accomplished according to the

types of programs they infect and the method of infection employed [Lud98]. One such

classification is between boot sector infectors and file infectors. Other viral types include

macro viruses, stealth viruses, and polymorphic viruses. The following sections describe

some of these common viruses. The file infector viruses are explained in detail, since

18

they are the type of virus MERCURY was developed to detect. This is information is

needed for determining the best methods for extracting byte patterns from the files, the

best operators for combining the byte patterns, and the overall knowledge needed for

applying constructive induction to this domain.

2.2.3.1. File Infector

File infector viruses affect the program files that a system must load in order to

make software function. When the program executes, the virus code executes and infects

more files [Lud98]. According to this method of infecting files, viruses are divided into

overwriting, parasitic, companion and link viruses [Kas99].

The overwriting method of infection is the simplest; the virus overwrites the

contents of a target executable with its own code, destroying the original contents of the

target file. The executable file stops working properly and can not be restored.

Parasitic viruses are file viruses that change the byte ordering within target files

while transferring copies of themselves, but the files themselves remain at least partially

usable. These parasitic viruses can be "prepending," by saving themselves at the top of

file; "appending," by saving themselves at the end of file; "inserting," by inserting

themselves in the middle of file; or "cavity," by copying of its own code to such parts of

the file which are known to be unused. [Kas99]

Virus incorporation at the top of a file is the most widely used method of insertion

into DOS *.bat ,*.com and *.exe files [Kas99]. There are two known methods of

19

inserting a parasitic file virus at the top of file. The first involves copying the top of the

target file to the end of file and then copying the virus body to the free space at the top of

file. In the second method the virus creates a copy of itself in RAM, appends the target

file and then saves the resulting concatenation to disk.

Another common method of virus incorporation into a file is appending the virus

to the end of file. In this method, the virus must also change the top of file so that the

virus code is executed first. In DOS *.com files, this is achieved by changing the first

several bytes to the instruction codes or to the address of the routine passing control to

the body of virus.

The final method of insertion into a file involves incorporating the virus into the

middle of the file. In the simplest case the virus "spreads" the file by moving fragments

of the file to the end and then writes its own code into the free space. Some viruses will

even compress their inserted fragments so that the file size remains unchanged. A more

difficult method is called "cavity" insertion, where a virus copies itself to unused areas of

the file.

The last two file infector viruses are companion and link. Companion viruses are

another type of file infector virus that do not change the infected files. They operate by

creating a copy of the target file and replacing the original with itself. When the target

file executes, the virus gets the control instead of the original file. Link viruses, like

companion viruses, do not change the physical contents of files. However, when an

infected file is executed, they "force" the operating system to execute their virus code by

modifying the necessary fields of the file system.

20

2.2.3.2. Boot Sector

Boot sector viruses infect the boot sector of a disk, affecting the computer system

during the start-up process. The boot sector is a small area on a disk that is read by the

computer when it is booted. This virus' operating principal is based on the algorithms of

starting an operation system upon power on or reboot. After the necessary hardware tests

for memory and disks are run, the system loader routine reads the first physical sector of

a boot disk and passes the control to it [Kas99]. These viruses are difficult to deal with

because they are executed during the start-up process, before the system is able to load its

antivirus software [Lud98].

2.2.3.3. Macro viruses

Macro viruses are programs written in macro languages built into some

application programs, for example, spreadsheets. To propagate, these viruses use the

capabilities of macro languages to help transfer themselves from one infected document

or spreadsheet to another. Macro viruses for Microsoft Word, Microsoft Excel and

Microsoft Office are the most common. A macro virus is possible if the macro language

built into a system has the following capabilities: a macro program must be tied to a

particular file, macro programs must have the ability to be copied from one file to

another, and a macro program must be able to receive control without user intervention.

[Kas99]

21

They are the first viruses to infect data files, rather than executables. Data files, to

which macros are attached, provide viruses with a more effective replication method than

executable files. The effects of macro viruses are growing; data files are exchanged far

more frequently than executable files, through e-mail and the Internet.

2.2.3.4. Network

Network viruses utilize networking protocols and the capabilities of local and

global access networks to multiply. Their main operating principle is the capability to

transfer viral code to a remote server or workstation. "Full-scale" network viruses also

have the ability to run their code on remote computers and "trick" users to run the

infected files. [Kas99]

2.2.3.5. Other Types

Other viruses are not as well understood as the types mentioned previously. They

are trickier in their methods of avoiding virus detection, and present great problems to

antivirus analysts and programmers. These types of viruses would not be recognized by

the current scanning and analyzing techniques of MERCURY.

One of these more complicated viruses is the stealth virus. A stealth virus

attempts to evade detection by concealing itself in infected files. To achieve this, the

virus intercepts system calls that examine the contents or attributes of infected files. The

22

results of these calls are altered to correspond to the file's original uninfected state. For

example, a stealth virus might remove the virus code from an executable when it is read,

instead of executed, so that an antivirus program will examine the original, uninfected

host program. [Lud98]

Another tricky virus is the polymorphic virus. These viruses are programmed to

change their internal code each time they replicate, making them more resistant to

detection. Their main component is the polymorphic generator, which is responsible for

creating varying encryption and decryption routines. These routines are used to hide the

existence of the virus by constantly changing the byte signature of the virus [Kas99].

Since the most common method of virus detection is scanning for viral byte patterns, as

in MERCURY, the detection program would likely be easily defeated. If you take two

instances of the same polymorphic virus, there are no bytes in common between them.

MERCURY, like most viral scanners would not be able to capture a unique byte pattern,

in order to detect this ever-changing virus.

2.3. Antivirus Programs

Antivirus programs are the most effective means of fighting viruses, but there are

no antivirus programs that guarantee 100 % protection from viruses [AAV97]. Such

programs do not exist because for each antivirus algorithm, it is always possible to

suggest a virus "counter" algorithm; however, the opposite is also true. For any virus

algorithm, it is always possible to create an antivirus; the cycle never stops! Furthermore,

23

the impossible existence of the absolute antivirus program has been mathematically

proven by Fred Cohen, based on the theory of finite slot machines [AAV97].

As futile as it may seem, it is important to study viruses in order to uncover their

weaknesses. Once these vulnerabilities are discovered, antivirus methods can be

exploited, and virus detection improved. The following sections describe detection

issues, current antivirus methods, their functions and their deficiencies.

When speaking of virus detection methods, it is necessary to understand some

terms used in this discussion. A "false positive" is defined as an uninfected object, in the

case of MERCURY, a self file, that triggers the antivirus program inadvertently.

Conversely, a "false negative" is defined as an infected object that remained undetected

by the detection system. "On-demand scanning" refers to virus scanning that starts on

the user's request; if fully implemented, MERCURY would exhibit this characteristic. In

this mode the antivirus program remains inactive until the user invokes it from command

line, batch file or system scheduler. "On-the-fly scanning" methods, however, are

constantly checking for viruses. In this method, the antivirus program is always active; it

resides permanently in memory and checks objects, without the user's request. [AAV97]

2.3.1. Purpose

Computer viruses are detected by antivirus programs through the exact or "fuzzy"

pattern recognition of a sequence of bytes called a signature, suspicious changes to files,

or heuristic monitoring of "normal" viral activity. A powerful antivirus program would

24

likely use a combination of these techniques. In addition to detecting the existence of a

virus, some antivirus programs are responsible for repairing the damage caused by

viruses [Kep94].

Typically, a "virus expert" obtains information about a particular virus by

disassembling it and analyzing the assembly code to determine the virus' behavior and

the method used to attach it to a host program. When the analyst has precise knowledge

of the virus' attachment method, he can construct repair algorithms for a large class of

similar viruses. This implies the virus has probably already infected files, possibly

destroying data. Additionally, this reactive, labor intensive process requires manual

intervention.

This research builds a computer immune model as part of a larger computer

health model, and hypothesizes that constructive induction may offer an approach to

detecting computer viruses that is both proactive and automated. Machine learning

potentially provides the automation, while focusing on the self that belongs on the

computer. Suspicion of the nonself may provide the insulation against the invaders.

Since this research is only concerned with detection of viruses and not the repair of the

damage, the following sections address the methods of detection currently used.

2.3.2. Requirements

The effectiveness and efficiency of an antivirus program is determined and can be

measured by its reliability, quality of detection, and speed of completion. [AAV97]

25

The reliability of antivirus programs is the most important criterion, because even

the best detector becomes useless if it cannot finish the scanning process. Reliability

measures the ability of the program to finish the scanning process without unnecessary

technical intervention from the user. If the program is unable to finish, parts of the disks

and files will remain unchecked, possibly leaving a virus in the system undetected. Since

MERCURY is not a fully functional virus detection system, this requirement could not be

fully assessed.

Virus detection quality is the next requirement, since the main purpose of an

antivirus program is to detect and remove viruses. Any antivirus program is useless if it is

unable to catch viruses, or does it with low quality. The "perfect" detector would have a

very high detection rate, accompanied by low false positive and false negative rates. If

an antivirus program causes many false positives errors, then its level of usefulness drops

significantly. This situation would cause the user to either delete uninfected files or

analyze suspicious files, triggering frequent false alarms.

MERCURY was designed to favor detectors that classified a large number of files

correctly. Additionally, the overall set of detectors was evaluated to ensure that the entire

set of files was classified. The quality measures for each detector are supplemented by

the quality measures for the set of detectors, which rate the percentage of files classified

by the entire set of detectors. Due to the MERCURY'S "infancy," assumptions about the

quality of detection would be premature. The detailed results of the testing are presented

in Chapter Six.

The next important criterion is working speed. If a full system check requires

several hours to complete, it is unlikely that most users are going to run it frequently.

26

Currently, a disadvantage to MERCURY is its time to completion. However, several

optimization methods are presented in Chapters Six and Seven that could attenuate this

deficiency.

2.3.3. Types

The most popular and effective antivirus programs are scanners. They are

followed by integrity monitors because of their effectiveness and popularity. Most of the

time, though, both of these methods are combined into one versatile and more powerful

antivirus program [AAV97]. The following sections describe these different methods.

2.3.3.1. Scanners

The principle operation of antivirus scanners is based on checks of files, sectors

and system memory, and search for known and new, unknown viruses [AAV97]. A

scanner recognizes viruses through an exact or fuzzy match of a relatively short sequence

of bytes occurring in the virus called a "signature." Matching a small portion of the virus

is more efficient in time and memory, and it enables the system to recognize variants.

The signature is determined through a manual and tedious analysis of the viral code by

virus experts. In addition, once the new signature is determined, the database of

signatures is updated, requiring each user to manually update the local copy of the

database on a regular basis. Between updates, though, users may be left exposed to

27

spreading viruses. Researchers at the High Integrity Computing Laboratory [KeA94]

investigated methods for automating this process. Their computer immune system

generated byte patterns that detected nonself and stored them for the scanner. MERCURY

also uses this method ofantivirus detection. Scanning was chosen over the other

detection methods due to its programmability, modifiability, simplicity, and functionality.

This research recognizes that signature scanning is only a part of a robust virus checker;

the scanning method was utilized as a tool for the proof-of-concept of constructive

induction applied to the virus detection domain.

Scanners are divided into resident programs that work on-the-fly; and non-

resident programs that check the system only on request. In most cases, resident scanners

provide better system protection, because of their immediate reaction to the appearance

of virus, whereas nonresident scanners can only detect viruses when executed [AAV97].

Scanners, including MERCURY, have the common advantage of versatility, and

common disadvantages of large virus databases and relative slowness of virus search.

2.3.3.2. Integrity Monitors

Integrity monitors operate by calculating checksums for disk files and system

sectors. These checksums are saved to a database along with data about file sizes and the

dates of last modification. On subsequent runs integrity monitors compare database

information with currently calculated values. If the database entry for a file differs from

the file's current characteristics, the integrity monitor reports file modification or possible

28

virus infection [AAV97]. While this method can determine if a file is changed, it

provides no information on the legitimacy of the change.

Integrity monitors cannot catch a virus immediately after its infiltration. Rather, it

detects after a period of time, when the virus has already spread throughout the computer.

Additionally, this method cannot detect viruses in newly arrived files, like e-mail

attachments, since these files do not have a baseline checksum.

2.3.3.3. Behavior Blockers

Antivirus behavior blockers are memory resident programs that intercept potential

virus danger and warn the user about it. Virus danger may be detected during write calls

to executable files, boot sector writes or during operations that may be conducive for

viruses to spread. [AAV97]

Blockers are able to spot and block the virus at the earliest stage of infection,

which is useful when a virus repeatedly launches surprise attacks. However, the

challenges to this method are virus algorithms that override a blocker's protection and a

possibility of a large number of false alarms. There are some improved versions of

blockers with greater versatility, but they also have problems of compatibility with

standard hardware configuration of computers, and are difficult to set up and configure.

All these reasons make behavior blockers extremely unpopular compared to other

methods of antivirus protection.

29

2.4. Machine Learning Methods

An important issue in artificial intelligence is machine learning, which enables

machines to adapt, in order to improve their performance [ABKS94]. Machine learning

research can be divided into five areas: neural networks, genetic algorithms, instance

based learning, analytic learning and inductive learning [LaS95]. Neural networks

attempt to model the structure of the brain by representing knowledge as a multilayer

network of units that spreads activation from input nodes through internal units to output

nodes [LaS95]. Genetic algorithms model the process of chromosome mutation through

a series of rules generated by combining and/or mutating aspects of existing rules.

Instance based learning uses a database of specific cases and experiences that are

matched to general problems. Analytic learning uses logic to solve a problem by proving

it from the supplied background knowledge. Collections of these proofs are then

compiled into rules used to solve similar problems. Finally, inductive learning attempts

to search for the combination of rules and attributes that best describe the problem that is

represented as a series of examples, both positive and negative.

The following sections focus on inductive learning, specifically constructive

induction, since this method of induction will be used as the learning mechanism for

MERCURY. The application of this learning method, and the components and processes

of constructive induction used for the design, development and implementation of

MERCURY are detailed in Chapter Five.

30

2.4.1. Inductive Learning

Induction is a form of automated machine learning that derives knowledge from

the observation of positive and negative examples of a concept. It attempts to

characterize this concept by carefully selecting attributes, which are characteristics

describing the examples, and, when necessary, constructing new, more useful, attributes.

By characterizing the concept, this type of learning explains the given examples and is

useful for predicting the class membership of subsequent unseen examples. The goal of

the constructive induction process is either characteristic learning or discrimination.

Characteristic learning is the ability to describe the examples. Discrimination is the

ability to distinguish between positive and negative examples [Gun91]. MERCURY'S

learning component uses the discrimination form of induction to distinguish between self

and nonself files on a computer system.

Inductive learning performs a series of manipulations that determines the best

attributes needed to describe the current example set and distinguish between positive and

negative examples. The end result of inductive learning is a description known as a

hypothesis, a statement relating descriptive attributes of a concept to values those

attributes assume in examples of the concept. A hypothesis indicates an approximation

of the concept, subject to change, should future examples indicate it is incorrect.

Collectively, these hypotheses form a rule base to describe the concept.

There are two forms of inductive learning: selective induction and constructive

induction. For example, age, height, and weight can be the attributes to describe an

instance of a person. To characterize the concept of "AFIT students," students would be

31

used as positive examples and non-students as negative examples. Based on the attribute

values of both the examples and counterexamples, a hypothesis could be made which

separates students from non-students. If this can be accomplished by carefully selecting

from the original attributes, this process is known as selective induction. If the original

attributes are insufficient for this task, then new, more useful attributes are constructed;

hence, the term constructive induction. In the previous example, if weight and height

were insufficient attributes to characterize the concept of AFIT students, a new attribute

could be constructed by combining one or more of them. For example, the new attribute

could be BMI, Body Mass Index, which is calculated using weight and height. The final

collection of hypotheses that best describes the concept forms the rule base. The

following sections describe the components of an induction system and the two forms of

inductive learning.

2.4.1.1. Components of Induction

An induction system is composed of several components: a representation of the

problem, a set of examples that are described by the representation, rules that are used to

construct new hypotheses, and background knowledge called bias. Selective and

constructive induction differ by the process each uses to generate hypotheses. Selective

induction is highly limited and the construction occurs in the build up of the final

representation.

32

Representation is how the world is presented to the system. There are two key

components of a representation: attributes and representation structure. Attributes are

normally defined by inspection of the problem domain and information gained from

experts. For example, the attributes used in this virus detection domain problem are bytes

from a file. Determining the "best" attributes that allow the induction to work properly is

the most important representation issue for inductive systems. This can be a complicated

process, since the proper attributes may not be readily apparent to either the system

developer or domain experts. There are varieties of different representation structures

that can be used for maintaining the attributes inside of the system. Common methods

include predicate calculus, decision trees, semantic networks and frames. [DiM81]

The importance of choosing the right attributes in the early stages of learning is a

crucial concept in the implementation of MERCURY. Though not a fully developed

constructive induction engine, MERCURY should benefit tremendously from prior

knowledge of the virus domain, as well as the performance of features and operators used

for the construction of new attributes.

An example set is used to initially train the system. Since induction relies upon

examples to test if the system has generated an appropriate hypothesis, the types of

examples used are important. The example set can normally be divided into two

categories, each with two subcategories. The first division should divide the examples

into a category used for training and a category used for testing. Training examples are

used to perform the induction process. Testing examples are utilized to analyze how

effective the process really was. Both training and testing example sets should include

positive and negative examples. Negative examples should include examples that are

33

both very different from and very close to the positive examples, in order to "fit" the best

rule for defining the concept.

The number of examples needed is an important decision. The probability

distribution describing the problem space is often difficult to determine for several

reasons. The experimenter may have limited knowledge of the concept; the number of

possible examples may be limited; or there may be an improper division of the example

set, resulting in a statistically different distribution than the problem space.

Selecting the induction rules utilized by the system is also an important factor.

These rules guide the selection of appropriate hypotheses, which form the best rule base.

The varieties of inductive rules are subsequently discussed in the hypothesis generation

section.

Bias is any factor that influences the hypotheses that are generated and evaluated.

This factor is intrinsic to the inductive process, based upon the incorporation of the

representation and the inductive algorithms utilized. Bias is information developed

through common sense or derived by expert knowledge about the concept domain; it can

decrease the time the system spends working with hypotheses that are later discarded.

Bias is a domain specific issue and can rarely be generalized to all systems. [Pro92]

A bias can affect the learning time, space usage and accuracy of the system.

Therefore, when choosing a bias the developer must make certain tradeoffs among the

factors of the system. One tradeoff is the accuracy of learning versus the learning time.

For example, as the number of attributes available to the system increases, so does the

induction learning time. Another tradeoff is accuracy of learning versus the efficiency of

34

space usage. A bias, such as a limiting the number of hypotheses, may inadvertently

discarded the correct solution. [Pro92]

2.4.1.2. Selective Induction

Selective induction determines a combination of attributes that best describes the

concept. Selective induction hypotheses are limited to applying the conjunction,

disjunction, and negation operators to the given attributes. The conjunction operator joins

two or more propositions through a logical and; both propositions must be true for the

conjunction to be true. The disjunction operator joins two or more propositions through a

logical or, one of the propositions must be true for the disjunction to be true. Finally, the

negation operator states that a particular proposition can not be included in the concept.

The selective induction process does not create new attributes, but instead combines

existing ones. Selective induction generalizes conjuncts of attribute values or partitions

instance space into contiguous regions. Conversely, constructive induction transforms

the original representation by associating diverse conjuncts or dispersed regions that may

appear unrelated [Ren90].

2.4.1.3. Constructive Induction

Constructive induction, like selective induction, determines a combination of

attributes that best describes the concept. However, the constructive inductive process

35

creates hypotheses by constructing new attributes. The process applies a variety of

operators to the original attributes from the representation. These hypotheses are tested

against the example set and incorporated into the rule base, if appropriate. The following

sections describe the processes necessary to develop a constructive induction based

learning mechanism.

2.4.1.3.1. The Constructive Induction Process

As previously stated, inductive learning depends on the ability of the machine to

create hypotheses, indicating an approximation of the concept. Gunsch [Gun91]

describes a framework for the inductive learning process that follows the path of

hypotheses through the inductive system. The following sections describe the four

processes of induction.

Hypothesis generation. The first step of the inductive learning process is the

creation of new hypotheses based on current rules and attributes. Prior knowledge about

the concept can help to explicitly define the hypotheses, or to guide the selection or

retraction of operators to create new rules. An application of bias includes simplifying

conjunctive rules, turning constants into variables, extending the range of an attribute,

combining the attribute value intervals, and creating new rules that include exceptions.

An exception can be found by looking for positive and negative examples that use similar

attributes. For example if a positive example is described by P(x) and a negative example

by P(x) A Q(x) the exception is P(x) A -.Q(X) [DiM81]. Other methods to induce rules

36

involve applying mathematical operators (+,-,*,/) or logical operators (A,V,-I) to the

attributes used in the representation.

Hypothesis ordering. Hypothesis ordering takes the generated hypotheses and

performs a preliminary check to ensure that only the most promising of the hypotheses

are evaluated. This step is a "heuristic, beam-sort approach and therefore does not

guarantee perfect filtering" [Gun91]. The main purpose of this step is to limit the number

of hypotheses to be evaluated, since hypothesis evaluation is an expensive process. This

is a form of bias necessary to control the computational explosion generated by this

learning method. Biases made during the development of MERCURY'S learning

component are discussed in Chapter Five.

Hypothesis evaluation. During hypothesis evaluation, each hypothesis is tested

against the goal of the system to determine if it should be used. As described earlier, the

goal of the constructive induction system is either characteristic learning or

discrimination of positive and negative examples. If the hypothesis adequately meets the

goal, then it is reserved for incorporation into the rule base. For example, hypotheses

generated by MERCURY'S learning component are evaluated based on their purity and

power scores. Power measures the strength of the hypothesis by rating the percentage of

classified examples over the entire set of examples, regardless of correctness. Purity

calculates the percentage of examples classified correctly, over the total number of

examples classified. If the hypothesis does not meet the goal, it is discarded or returned

to the hypothesis generation step for additional inductive refinement. This step is

computationally expensive since every hypothesis must be compared against all the

members of the example set.

37

Hypothesis incorporation. In the final step, those hypotheses that have been

determined to meet the system goals are incorporated into the rule base. The hypotheses

are arranged within the rule base in the order they reduce entropy. Entropy is the amount

of disorder remaining within the divisions of the examples after applying a hypothesis or

group of hypotheses.

2.5. Machine Learning Applied to Detection and Recognition

Machine learning can help solve difficult, real-world problems which have well-

defined tasks, implemented programs, and identified principles [Win92]. Intrusion

detection, is one such problem; there are many applications of machine learning in

computer security systems. The following sections describe the use of different machine

learning methods to detect or recognize intruders, such as hackers or viruses, in computer

systems.

2.5.1. Incremental Learning Applied to Computer Intrusion Detection

Research conducted at the George Mason University [MaM95] describes an

incremental learning method, which modifies the current hypotheses set by combining

past training examples with new ones. The proposed method is incremental because

additional examples are incorporated into the training set over time. For this study, the

process was applied to the domain of intrusion detection in computer systems. This

38

domain was chosen computer systems needs to interact with users and the environment to

adapt to changing conditions and behaviors. Researchers believe this method to be

effective for applications involving intelligent agents in a changing environment, active

vision, and dynamic knowledge bases.

The first phase of the methodology is traditional for the learning by examples

method. It involved building an adequate training set, which provided the learning

mechanism a sufficient concept of the computer environment. The second phase

involved incrementally teaching the machine and customizing the concept to the specific

environment of a particular user. The system received reinforcement or criticism from

the user and/or environment. This approach uses feedback from the user or environment

to determine training examples.

Concerns when applying this method are similar to concerns when a learning by

example approach is taken. The choice of representative examples and the maintenance

of these examples throughout the learning process are both important issues. Attributes

considered important in the early stages of learning might not be important in later stages;

more importantly, attributes considered unimportant in the early stages of learning might

be important in later stages. For a rapidly changing domain, it is probably more

beneficial to replace "old" attributes with "new and improved" attributes. For a more

stable environment, it might be more practical to keep all attributes.

Compared to a batch method of providing all examples at once, the proposed

method yielded significant gains in regard to learning time and memory requirements, but

lost some predictive accuracy and gained concept complexity. Though the experiment

39

was scaled down significantly, future work will involve applying this method to more

complex problems.

MERCURY does not allow for incremental learning, but future iterations should.

Virus detection, like intrusion detection, requires a degree of interaction with users and

the environment to adapt to constantly changing conditions and behaviors. Future

versions of MERCURY should allow for relearning when the definition of self changes,

the system learns incorrectly, or the system receives virus prevention or detection

information from other components in the Computer Health System.

2.5.2. Neural Networks Applied to Computer Virus Detection

Researchers at the IBM Thomas J. Watson Research Center [TKS96] developed a

neural network for the detection of boot sector viruses, which was deployed

commercially, as part of the IBM Antivirus software package. The team faced several

challenges such as representation scheme, scarcity of training data, tradeoffs between

false positive and false negative errors, and memory and computational complexity

limitations.

They developed a representation scheme based on features of byte strings from

infected and non-infected files, and using frequency analysis, narrowed the list of features

to those whose probability of occurrence was higher. Their limited examples were

divided into training and testing sets, with additional "man-made" inputs to combat

generalization, or underlearning of the concept. For practical virus detection, more

40

emphasis was placed on false positives, instead of false negatives; false positives are

much more frequent. Memory and CPU constraints were reduced through changes in

storage formats, but present future challenges to commercial use of larger mutilayer nets.

The neural net's performance performs as expected, having caught 75% of all

new boot sector viruses since its release. Most of the viruses not caught eluded the

system because their byte patterns were obscured in some way; improvements are

constantly being made.

Similar to the system developed at IBM, MERCURY relies heavily on a priori

knowledge. The results in Chapter Six show that statistical guidance can be used when

developing the learning mechanism, reducing computational complexity and improving

the method's efficiency.

2.5.3. Genetic Algorithms Applied to Recognition in the Immune System

Researchers [FJSP93] built a model to study the pattern recognition processes and

learning that take place in the immune system, with a genetic algorithm as its central

component. Antigens and antibodies, the major players in the human immune system

were represented as binary strings. An antibody matches an antigen if their bit strings are

complementary; however, the strings do not need to match exactly. Matching functions

were defined, evaluated on their matching abilities, and awarded a fitness value.

In principle, the genetic algorithm should be able to find the matches with the

highest fitness values by evolving a population of antibodies. Though there was much

41

"noise" in the experiment, the algorithm was able to detect common patterns for

antibodies. It also did not overlearn the problem by maintaining diversity within its

population. This algorithm for maintaining diversity is related to the ordering and

evaluating mechanism commonly employed in learning classifier systems.

Again, this research stresses the importance of domain knowledge to guide the

learning process and improve the classification results.

2.6. Summary

This chapter presented a description of the areas needed to develop a constructive

induction based computer virus detection system. The literature review described the

function, structure, and types of computer viruses and explained the inadequacies of the

current methods used for their detection. Another aspect of a virus detection system is

the learning mechanism, also discussed this chapter. It described machine learning

methods, focusing on the method of constructive induction. Current research areas

applying machine learning to computer security problems were also addressed.

Chapter Three describes the analogies that can be drawn between MERCURY,

the constructive induction based virus detector, and certain characteristics of the human

immune system. The chapter also describes how this computer immune system fits into a

larger model of a Computer Health System. Chapters Four and Five provide general and

detailed descriptions, respectively, of a constructive induction based computer virus

detector.

42

3. Computer Immune Models

3.1. Overview

Chapter Two described current methods of virus detection, concepts of

constructive induction, and research trends utilizing machine learning for computer

security and detection. This chapter explains some analogies between computer systems

and human systems by comparing the mechanisms used for the local detection and global

protection against virus invaders. The two computer models are the Computer Health

System, based on public health system, and the computer immune system, based on the

human immune system. Therefore, the first two sections provide discussions of these

immunologically-based areas. In addition, research trends in the area of computer

immunology are addressed. Finally, the computer models are presented. Their

characteristics and components are defined individually, and their requirements are

discussed. Special attention is afforded to MERCURY, the virus detection component of

a computer immune system. Chapters Four and Five provide general and detailed

descriptions of MERCURY, respectively.

43

3.2. An Overview of the Public Health System

Public health is the science and art of preventing disease, prolonging life and

promoting health through an organized community effort responsible for: sanitizing the

environment, controlling communicable infections, educating the individual in personal

hygiene, organizing medical and nursing services for the early diagnosis and preventative

treatment of disease, and developing a standard of living adequate for the maintenance of

health. [Tur97]

The public health system is a social enterprise that utilizes current knowledge in

order to have the maximum impact on the health of a population. It identifies problems

that call for a preventative "team" approach to protect, promote, and improve health.

Public health is a collective effort to identify solutions that prevent and avoid health

problems.

Public health's prevention efforts in the form of social policies, community

actions and personal decisions are responsible for 25 years of the 30-year improvement in

life expectancy since 1900 [Tur97]. Economic benefits of the public health system can

be measured in terms of prevention treatment over cure treatment cost savings.

3.2.1. Functions of the Public Health System

The public health system has three core functions: assessment, policy

development and assurance, described in the following sections [Tur97].

44

3.2.1.1. Assessment

The public health system assesses the health needs of the community by

establishing a systematic process that periodically provides information on the health

status and health needs of the community. The system also investigates health hazards in

the community by conducting investigations that identify the magnitude of health

problems, duration, trends, location, and populations at risk. The third aspect of

assessment involves analyzing the elements of identified health needs in order to find

causes and contributing factors that place parts of the population at risk of adverse health

outcomes.

3.2.1.2. Policy Development

This system function advocates public health, builds constituencies,

identifies resources in the community and generates relationships with public and private

agencies for the effective planning, implementation and management of public health

activities. The system must set priorities among health needs based on the size and

severity of the problems and the acceptability, economic feasibility and effectiveness of

intervention. Another aspect of this function is the development of plans and policies

addressing priority health needs and establishing goals and objectives that focus on local

community needs.

45

3.2.1.3. Assurance

The third function involves managing resources and developing organizational

structure through the acquisition, allocation, and control of human, physical, and fiscal

resources. This includes maximizing the operational functions of the local public health

system through the coordination of community agencies and efforts to avoid duplication

of services. The system must also implement programs and other arrangements to ensure

direct services for priority health needs identified in the community. Additionally, this

function must evaluate programs, provide quality assurance, ensure programs are

consistent with plans and policies, and provide feedback on inadequacies and changes.

Informing and educating the public on community health, promoting an awareness about

available public health services and promoting health education initiatives are an

important aspect of this function because they contribute to individual and collective

changes in health knowledge, attitudes, and practices.

3.2.2. The Public Health System Framework

To understand what public health represents and how the components relate to

each other, a conceptual and understandable framework is necessary. This framework

brings together the mission and functions of public health in relation to the inputs,

46

processes, outputs, and outcomes of the system. The following table summarizes these

components [Tur97].

Table 2 -- Public Health System Components

Inputs or
Capacities

Practices or
Processes

Outputs or
Services

Outcomes or
Results

Community leadership, human resources, fiscal, and physical resources,
information resources, and system organization necessary to carry out
the core functions of public health
Organizational practices or processes that are necessary and sufficient to
ensure that the core functions of public health are being carried out
efficiently
Health services intended to prevent death, disease, and disability and to
promote the quality of life

Indicators of health status, risk education, and quality-of-life
enhancement

The mission of the public health system is to promote physical and mental health

and prevent disease, injury and disability. The core functions of public health are

assessment, policy development, and assurance. The inputs carry out the core functions

through processes called public health practices. Inputs are subjected to these processes,

resulting in outputs, in the form of activities labeled as programs or services. Outputs are

intended to produce the desired results, characterized as health outcomes. Figure 3 shows

the framework for public health; it attempts to bridge the gap between what public health

is and does and how it does this. This framework tends to be very ambiguous and

abstract, even to those in the medical field; however, most recognize the need for some

type of formalization. The following sections examine several of the public health

components in detail.

47

Public Health System

Purpose and Substance Inputs

v ir

Functions —► Practices

v

Outputs

v
Outcomes

Figure 3 - The Public Health Framework

3.2.2.1. Infrastructure as an Input

Infrastructure can be described in terms of both static and dynamic attributes. In a

static representation, the public health infrastructure is the basic building block and

foundation for public health activities. In a more dynamic representation, the public

health infrastructure is the capacity or capability of that foundation to carry out its main

functions. The infrastructure serves as the nerve center of public health and represents

the capacity necessary to carry out the core functions.

The infrastructure can be broken down into individual components. Components

of the infrastructure are human resources, organizational resources, informational

48

resources, and financial resources [Tur97]. The following table summarizes these

components.

Human
Resources
Organizational
Resources

Informational
Resources
Financial
Resources

Table 3 ■- Public Health Infrastructure Components

Include the workforce of public health and their knowledge, skills, and
abilities
The relationships among the various system participants, public and
private, and the mechanisms that manage the system practices,
including their leadership components and collaborative strategies
Include the various data, information, and communication systems

The funding levels and sources for the work of public health

The first of the components is the "workforce" of public health. The

organizations facilitate the contributions of the workforce. Organizations are groups of

individuals linked by common goals and objectives. This implies that each organization

has a specific mission or purpose, resources appropriate to work toward that purpose, the

ability to determine progress towards its goals and objectives, and defined process for

making decisions.

The relationships among the agencies, organizations, institutions, and individuals

are informal and collaborative rather than formalized and centrally directed. The

workforce, the organizations, and their leadership rely heavily on information for

identifying problems, determining interventions, and tracking progress toward common

objectives. Together, these essential components of the infrastructure formulate the

system's role in public health. [Tur97]

49

3.2.2.2. Essential Health Services as Practices

The following list summarizes the organizational practices that are necessary and

sufficient to ensure that the core functions of public health are being carried out

efficiently [Tur97].

1. Monitor health status to identify community health problems

2. Diagnose and investigate health problems and health hazards in the

community

3. Inform, educate, and empower people about health issues

4. Mobilize community partnerships to identify and solve health

problems

5. Develop policies and plans that support individual and community

health efforts

6. Enforce laws and regulations that protect health and ensure safety

7. Link people with needed personal health services and ensure the

provision of health care when otherwise unavailable

8. Assure a competent public health and personal health care

workforce

9. Evaluate effectiveness, accessibility, and quality of personal and

population-based health services

10. Research for new insights and innovative solutions to health

problems

50

3.2.2.3. Health Care Delivery as a Practice

The supply of health care resources is another important component of the public

health system. The growing numbers and types of health delivery systems reflect the

recent changing environment. Increasing competition, combined with cost containment

initiatives, has led to the generation of group medical practices, health maintenance

organizations, preferred provider organizations, ambulatory surgery centers and

emergency centers. Many of these delivery system have used managed-care strategies

and methods that seek to control the utilization of services to reduce costs. [Tur97]

3.2.2.4. Prevention as a Practice

One of the most important features of public health is its reliance on prevention.

Prevention characterizes actions that are taken to reduce the possibility of something

happening, or minimize the damage if it does happen. Prevention is considered by many

to be the purpose of public health.

Prevention intervention strategies are divided into three types: primary,

secondary, and tertiary [Tur97]. Primary prevention involves the prevention of the actual

disease or injury, by reducing the exposure or risk level factors. Secondary prevention

attempts to identify and control disease processes in their early stages, before symptoms

are apparent. Tertiary prevention seeks to prevent disability by restoring individuals to

their optimal level of functioning following some kind of damage. Intervention at the

51

primary, secondary, and tertiary levels is a dependant upon knowledge, resources,

acceptability, effectiveness, and efficiency.

3.3. An Overview of the Human Immune System

Immunology is the study of the body's resistance to invasion by other organisms.

The immune system uses several layers of defense to protect the body against invaders,

known as pathogens. Initial barriers to infection are the skin and physiological barriers

such as pH and temperature. If the pathogens are able to get past these barriers, they

must be dealt with by another layer of the immune system. This section provides an

engineer's perspective of this immune system layer by describing system components,

types of immunity, immunological functions, processes used to perform these functions,

and challenges to the immune system.

3.3.1. Immune System Components

One of the major components of the immune system is the lymphocyte. These

white blood cells attack inflamed, infected cells. There are three major types of

lymphocytes involved in the immune response. Two of these cell types are "born" as the

same type of lymphoid cell and later differentiate in separate areas of the body. One line

matures in the thymus and is referred to as a T cell, while the other line matures in the

bone marrow and is called a B cell. These two types differ greatly in function, yet both

52

have a similar purpose: to recognize and react to specific pathogen targets in the body.

Lymphocytes are constantly circulating in the bloodstream and the lymphoid tissues,

allowing a rapid sampling of all cells that might possess "receptors" for pathogens, or the

ability to "bind to" pathogens.

Antigen-presenting cells (APC) are the third type of lymphocytes that participate

in the immune response. Although these cells do not have receptors as the T and B cells

do, they are still actively involved in the immune process. Their function is to "process"

the pathogen from inside a cell, and "present" it on the surface, making the pathogen

"visible" to the T and B cells [BSL96]. The following table summarizes the

responsibilities of these three types of lymphocytes discussed in the following sections.

Table 4 -- Immune System Lymphocytes

B Cells

T Cells

APC Cells

Responsible for the production of antibodies, which enhance and activate
various capabilities of the immune system
Responsible for regulating antibody production and cellular immune
reactions, and killing infectious cells
Responsible for processing and presenting antigens on the cell's surface
for recognition by other immune cells

3.3.1.1. B Cells

These cells develop in the bone marrow and produce antibodies, or protein

molecules that enhance and activate various capabilities of the immune system.

Antibodies mark infected cells for attack by other immune cells. This is the simplest

immune response, yet very rapid and effective. Additionally, B cells mediate the immune

response. Cells develop through the process of negative selection whereby they die

53

unless they receive the "survival signal" from the environment. The "survival signal" is

produced only when the antibodies do not react to the body. [WeC93]

Each B cell carries the antibodies on its surface that detect a unique antigen.

After being stimulated by both antigens and T cells, they may return to the bone marrow

to undertake their final maturation. Mature B cells do not secrete antibody, but instead

differentiate into antibody-secreting plasma cells during antigen stimulation [WeC93].

B cells have three purposes: serve as the first line of defense against pathogens,

specialize in neutralizing toxins, and secrete mucus to help create a barrier against

infectious agents [Nos93].

3.3.1.2. T Cells

T cells develop in the thymus and are responsible for regulating antibody

production and cellular immune reactions, and killing infectious cells. While in the

thymus, these cells undergo a rigorous elimination process, akin to "boot camp."

Developing T cells are exposed to self: those that do not react to self may leave the

thymus and take up residence throughout the body [WeC93]. Otherwise, they are

eliminated.

There are two types of T cells: CD4 (helper or inflammatory) and CD8 (killer).

The CD4 cells promote inflammation and signal other T cells to multiply. They also help

B-cells by signaling an infection. CD8 cells are able to "punch holes" into the target cell

and inject it with chemicals, killing the infected cell.

54

T cells differ from B cells in the kind of antigen they recognize and in the way

they recognize an antigen. T cells are unable to recognize the entire antigen, but instead

can recognize fragments of antigens, known as peptides. [Nos93]

3.3.1.3. Antigen Presenting Cells (APC)

The third type of lymphocyte is the antigen presenting cell, which processes and

presents antigens to helper T cells. APCs include various types of lymphocytes, mainly

B cells, macrophages, which "ingest" infected cells, and dendritic cells. These cells take

in antigens and break them down, so fragments of the antigen can be brought to the cell's

surface. These fragments are carried to the surface by MHC proteins.

Major Histocompatibility Complex (MHC) is a set of proteins present in all cells

that bind to peptides produced within the cell and bring them to the cell surface, where

they can be recognized by the immune system. An important feature of MHC is a groove

in its structure, which enables the protein to bind to a wide range of antigenic peptides.

When the invader replicates inside a cell, MHC carries the short peptide chains from

those viral proteins to the cell surface. The patterns of these peptides are called epitopes,

which allow for the detection of multiple pathogens by a single lymphocyte. During an

immune response, the presence of these foreign peptides in the MHC groove tells the

immune system that the cell is infected. [Jan93]

55

3.3.1.4. Complement

In addition to the three types of lymphocytes, the body utilizes other components

to fight off infection, such as the complement system. Complement is a group of at least

11 proteins that circulate in the blood in an inactive, non-functional form. This system

"complements" the activity of the antibodies in destroying bacteria, either by easing

phagocytosis, or "eating of infected cells," or by puncturing the bacteria cell wall. It is an

essential player in the adaptive immune system because it entails the production of

molecules that influence cellular immune mechanisms.

3.3.2. Types of Immunity

"Immunity refers to all the mechanisms used by the body as protection against the

environment agents that are foreign to the body" [BSL96]. Examples of agents, or

pathogens are toxins, pollen, drugs, viruses, bacteria, and parasites. Pathogens can infect

cells through two methods: the pathogens are found within the membrane based

organelles through which they entered, or the pathogens gain access to the fluid part of

the cell and the cell nucleus. Viruses are the most common intracellular pathogens. The

body uses two types of immunity: innate and adaptive.

56

3.3.2.1. Innate

Innate immunity represents the part of the immune system present at birth, and

helps the body "resist infection through normal body functions." It includes body

surfaces, internal components, and other physiological barriers such as the skin, mucus

membranes, pH and temperature. All of these elements affect pathogens directly or

encourage other immune responses. This is a static system, unable to adapt to new

invaders. One of the main components of innate immunity is the macrophage cell,

responsible for the ingestion of foreign invaders.

The innate immune system is responsible for providing a barrier against infection

and detection of extracellular infections. These infections occur when the pathogen is

not yet bound to a specific cell in the body. The body defends against these infections

through a multilevel defense that includes: phagocytosis of bacteria and other invaders

by white blood cells and cells of the tissue macrophage system; destruction of organisms

by the acid secretions of the stomach and by the digestive enzymes; resistance of the skin

to invasion by organisms; and, presence in the blood of certain chemical compounds that

attach to foreign organisms or toxins and destroy them [Guy81].

The innate immune system generates detectors such as macrophages and the

complements. Since these detectors are not specific, there is no need for them to undergo

a process of testing for reaction against self. The complement component of the innate

immune system detects by an affinity to chemically react with bacteria. This reaction

57

coordinates the complement system with the macrophages by signaling the macrophage

to destroy the bacteria [RBM98].

3.3.2.2. Adaptive

Adaptive immunity enables the body to recognize and respond to previously

unseen invaders. This is one of the most powerful capabilities of the immune system.

Immunity is learned upon contact with the offending pathogens. Once an invader has

been detected in the body, immune cells activate to learn the structure of and destroy the

pathogen. An important feature of adaptive immunity is the body's ability to remember

previous invaders allowing a faster response time upon subsequent encounters with the

same pathogen.

The response begins with the B cells circulating throughout the bloodstream. The

antibodies present on their surface have a high affinity to bind to specific antigens. When

a B cell confronts its matching antigen, the antibodies on its surface bind to the antigen.

Detection is founded upon recognizing epitopes. Following detection, the complement

system is activated to destroy the antigen with the help of macrophages. Additionally,

the B cell replicates with a large number of mutations. Through the process of natural

selection, those B cells possessing the best antigen detecting capabilities are stored in

immunological memory for future defense.

The adaptive immune system requires an elaborate generation process to produce

detectors. The output of this process is a collection of cells that individually detect a few

58

pathogens but collectively provide the capability to detect numerous pathogens.

Detection of the antigen occurs through different methods dependent upon whether the

pathogen is extracellular or intracellular.

As discussed previously, extracellular infections are normally handled by the

innate immune system. One of the primary activities of the adaptive immune system is

eliminating intracellular infections.

When the pathogen gains access to the inside of the cell, MHC binds to the

pathogen and moves it to the cell surface, where it is detected by B cells or helper T cells.

Once the immune response begins, the helper T cells secrete chemicals called cytokines.

These chemicals activate additional B and T cells, amplifying this cell mediated immune

response [Elg96, Pau93]. The binding between the pathogen fragments and the

lymphocyte is the first of two coordinating signals necessary for an immune response. A

second signal is used to activate killer T cells. Killer T cells destroy the infected cell by

eliciting apoptosis, a process that forces the cell to kill itself. Killer T cells can also

release chemicals called cytokines that limit viral replication within a cell while the cell

attracts macrophages and other phagocytes to destroy the cell.

Table 5 - Types of Immunity

Innate
Immunity

Adaptive
Immunity

Represents the static part of the immune system present at birth and
provides a barrier against infection and detection of extracellular
infections
Enables the body to recognize and respond to previously unseen invaders
and eliminates intracellular infections

59

3.3.3. Functions

The immune system performs several functions in order to defend the body

against invasion.

3.3.3.1. Detection

The immune system protects the body through the detection of nonself patterns.

The immune system's detection capability is very powerful since it is highly distributed,

detects previously unseen invaders, and does not require an exact match between detector

and pathogen. Lymphocytes circulate throughout the body and bind to foreign invaders,

initiating the immune process. The immune system utilizes a distributed system of

millions of detectors to fight invaders. The detection problem is a hard problem since

there are on the order of 106 self patterns to distinguish from 1016 nonself patterns

[FHS97].

3.3.3.2. Adaptation

The immune system incorporates mechanisms that enable lymphocytes to learn

the structures of specific foreign proteins; essentially, the immune system evolves and

reproduces lymphocytes that have high affinities for specific pathogens. The immune

60

system adapts through a process called affinity maturation, which is essentially a process

of mutation and selection [Zin96].

When a B cell is activated by binding to a pathogen, it secretes antibodies,

inactivating pathogens or identifying them to other innate system defenses for

elimination. After this binding, the B cell hypermutates, creating additional receptors.

The immune system is constantly adapting through slight variations of successful

receptors in pursuit of the most effective immune response [Jan93]. All B cells compete

for available pathogens, with the highest affinity B cells being the "fittest" and replicating

the most.

3.3.3.3. Memory

The body remembers previously seen invaders, speeding up the response to

subsequent encounters. The first time an invader is encountered, the body launches a

primary response that learns the structure of the pathogen. The immune system stores

this knowledge in memory cells. Subsequent invasions result in the activation of these

memory cells, providing a very specific and rapid response.

Table 6 - Immune System Functions

Detection

Adaptation

Memory

The ability of the immune system to recognize nonself utilizing lymphocytes
circulating throughout the body
The ability of the immune system to learn the structures of specific
pathogens; the immune system evolves and reproduces lymphocytes that
have high affinities for these pathogens
The ability of the immune system to efficiently and effectively remember
previously seen invaders and speed up the response to subsequent
encounters .^^—

61

3.3.4. Human Immune Processes

Innate and adaptive immunity have common processes that are used as a

framework for a model of the immune system: generation, detection, coordination, and

destruction. During the generation process, the immune system creates all its antigenic

detectors through random mutations and combinations of genetic material. Those

detectors that are not self-reactive are released into the body. During the detection

process, detectors move about the body attempting to determine the existence of nonself.

The immune system provides a highly distributed detection system with local

coordination. Coordination is required to ensure that the proper immune response is

taken following detection of the pathogen. The immune system uses various signals and

chemical attractions to coordinate the components of the immune system. The main

function of the immune system is to destroy invaders. Destruction can occur through

ingestion of the invader by immune cells, inducing the pathogen to kill itself, ingestion of

infected cells, and other processes. Destruction also occurs through the creation of

inhospitable environments for pathogens through pH, temperature and mucous.

Table 7 ~ Immune System Processes

Generation

Detection

Coordination

Destruction

The process of creating antigenic detectors through random mutations
and combinations of genetic material
The process of detectors moving about the body attempting to determine
the existence of nonself
The process of implementing the proper immune response following the
detection of a pathogen
The process of eliminating the invader by immune cell and other
processes

62

3.3.5. Autoimmmunity

While the immune system usually protects us against foreign invasion, sometimes

the recognition capabilities falter, causing the body to make antibodies and T cells that

attack self. This process is called autoimmunity.

Autoimmunity may be caused by an abnormal immune response to normal self-

antigens, a normal immune response to abnormal self, or an abnormal immune response

to abnormal self. Two major mechanisms lead to autoimmunity: a change of self, leading

to the formation of new antigens, and exposure to antigens that induce cross-reactive

antibodies [BSL96]. Other conditions can also lead to autoimmunity, such as a decrease

in killer T Cells or helper T Cells, a dysfunctional MHC presentation of peptides on a

non-APC, problems with lymphocyte production, and genetic and hormonal factors

[Ste93].

Autoimmune diseases are either organ-specific or systemic and are a consequence

of a dysfunction in adaptive immune system, caused by self-reacting T cells or

antibodies. Autoimmunity may also be induced by exposure to antigens bearing a close

structural resemblance to normal tissue components, called antigen mimicry. In this case,

damaged is caused when the immune system cross-reacts with the normal tissue that has

been mimicked.

63

3.4. Computer Immune System Research

As the complexity of computer systems increases to a level comparable to

biological systems, an analogy between computer systems and immune systems is

possible. Computer scientists hope that in studying the human immune system, new

solutions will emerge to computer viruses and other security problems. Beneficial

properties of a computer immune system include: detection of a virus in the host,

isolation of the virus and classification based on its characteristics, location of infected

resources within the host, repair of any damaged host resources, and storage of

information on previously encountered viruses [MVL98].

Current immunologically inspired research investigates different methods of

detection. One method built a computer immune system to detect computer viruses

across hosts connected to a network. Another research group used a computer immune

system for network intrusion and virus detection, by monitoring system calls to detect

intrusion. This same group also studied the generation of detectors modeled after the T

cell generation of the human immune system. A third group defined a distributed

architecture for a self-adaptive computer virus immune system, and described the role of

evolutionary algorithms and performance of intelligent agents in this system. Finally,

another approach investigated information survivability, utilizing the public health

infrastructure as a model for a computer immune system.

The following sections expound upon these different approaches and their

respective models. Since the last portion of this chapter combines advantageous

64

properties from each of the research areas to form a different computer immune

approach, these characteristics will be noted throughout the sections.

3.4.1. The Digital Petri Dish

Jeffrey Kephart and Steve White conducted research at IBM Thomas J. Watson

Research Center [KSCW97], developing a computer immune system to detect computer

viruses across hosts connected to a network. In their system, each networked PC

analyzed potentially infected files, and sent suspected infected files to a central computer.

The detection methods employed by the computers modeled the human immune system.

Detectors were generated in large numbers, and those known to flag abnormal activity

were replicated throughout the system, much like immune cells with receptors matching a

given antigen are stimulated to reproduce themselves. This provided stronger selection

for good recognizers and increased the chance of generating computer immune cells that

are matched to a particular invader.

In their system, when one of the networked PCs receives a suspected "infected"

sample, it sends the file to another computer that acts as a "digital petri dish." A software

program on this computer tricks the virus into infecting a "decoy," bringing the viral code

out of hiding [KSCW97]. If a virus is detected, a signature is extracted through bayesian

methods, and sent to the infected host and other computers on the network. These

bayesian methods analyze frequency of byte patterns occurring in infected and uninfected

files. With a recognizer and a repair algorithm appropriate to the virus, the extracted

65

viral information can be added to the corresponding databases. If the virus is ever

encountered again, the immune system will recognize it immediately as a known virus.

Figure 4 shows the petri dish concept.

A computer with this immune system could be thought of as "ill" during its first

encounter with a virus. However, on subsequent encounters, detection and elimination of

the virus would occur much more quickly, for the computer could be thought of as

"immune" to the virus.

This computer immune system is desirable and feasible. The technology is being

integrated with IBM AntiVirus, Symantec's Norton AntiVirus, and Intel LANDesk Virus

Protect [IBM98]. Most of the necessary components are already in use in one form or

another, some already exist in IBM AntiVirus itself. Others are presently in use in the

virus laboratory, for updating the databases employed by IBM AntiVirus to recognize

viruses and repair infected files. Judging from the relatively low false-positive rate of the

IBM AntiVirus signatures, the detector algorithm's ability to select good signatures is

better than can be achieved by typical human experts.

66

Viral Analysis

>

£ Irs
3Q

Suspected
Infected
Sample

Viral Cure
(information for removal)

1101001

Viral Extraction Viral Vaccine
(signature for database)

Figure 4 - Pictorial Representation of the Digital Petri Dish

Table 8 -■ Highlighted Features of the Digital Petri Dish

Advantageous Properties

Network Connectivity

Centralized Viral Analysis

Information Sharing

Provides more efficient access to virus data and
detection resources .^___
Allows for easier coordination and less duplication of
virus information and detection resources
Provides efficient and effective means for disseminating
virus information

Disadvantageous Properties

Network Connectivity

Centralized Viral Analysis

Sensitive infected files are at risk when sent over the
network; the system is dependant on the availability of
network
Dependency is increased; single point of failure exists

3.4.2. Improving Computer Security

Stephanie Forrest and researchers at the University of New Mexico, the Santa Fe

Institute and Odyssey Research Associates conducted research that examined the

67

similarities between living organisms and computers in order to improve computer

security. Improvements in intrusion detection can be achieved by designing computer

systems with some important characteristics taken from the human immune system:

multi-layered protection; highly distributed detector, effector and memory systems;

diversity of detection ability across individuals; inexact matching strategies; and

sensitivity to most new foreign patterns [FHS97].

Their computer immune system has the following components: a stable definition

of self; the ability to prevent or detect and subsequently eliminate dangerous foreign

activities; memory of previous infections; a method for recognizing new infections;

autonomy in managing responses; and a method of protecting the immune system itself

from attack. [FHS97]

One of the first challenges the team confronted was the determination of self and

nonself. They wanted their definition of self to be tolerant of legitimate changes,

including those made to files, caused by adding new software or users, and routine

activities of the system administrators. However, the system must be able to detect

unauthorized changes and users, as well as viruses and inside attacks. These conflicting

requirements were addressed in two supplemental areas of research: intrusion detection

and distributed change detection.

68

3.4.2.1. Intrusion Detection System (IDS)

The IDS approach to security is based on the assumption that a system will not be

secure, but that intrusions can be detected by monitoring and analyzing system behavior

[HFS97]. In the network intrusion detection domain, their system is based upon self and

nonself recognition through anomalous system calls. Each computer's definition of self

is based upon a baseline analysis of system calls executed by privileged processes in a

networked operating system.

Their strategy for the intrusion detection system was to first build up a database of

normal behavior for each program of interest. Second, during a program's execution they

scanned traces of system calls that might have contained abnormal behavior, and matched

the trace against patterns stored in the database. If this trace did not occur in the normal

database it was recorded as a mismatch, and used to distinguish between self and nonself.

As in the body, the database of self is unique to each computer. Figure 5 presents the

main concepts of this system.

69

Normal System Calls I

Build databases

Questionable System Call

Compare byte
patterns of
system call to
those in databases

11010010100
IIOIOIOIOII1
10111010101
01010101011
00001000101
01000101010

Abnormal System Calls

Figure 5 - Pictorial Representation of the Intrusion Detection System

The research group constructed these databases, and performed abnormal traces

for three Unix processes. Their results suggested that short sequences of system calls

executed by running programs are a good discriminator between normal and abnormal

operating characteristics. These calls provide a compact signature for normal behavior

and the signature has a high probability of being perturbed during intrusions. [HFS97,

FHS97]

According to the research team, the current system is far from having the

capabilities of a natural immune system. Besides refining the notion of self on a

computer, provisions need to be made to allow the concept of self to change over time.

Much work needs to be done in the area of partial or approximated matching, for the

team realizes they have no mechanism for self-adaptive learning, as in the case of affinity

maturation or negative selection in the human immune system. [FHSL96]

70

Table 9 ■- Highlighted Features of the Intrusion Detection System

Advantageous Properties

System Specific

Decentralized Analysis

Multiple Applications

The database of self is unique to each computer
Each system develops its own concept of self and
adapts accordingly
Can be used to detect viruses, intruders, or malicious
users

Disadvantageous Property
Lack of Learning I There is no mechanism for self-adaptive learning

3.4.2.2. Distributed Change Detection

This application of immunology borrows from mechanisms involving T cell

generation and training. T cells have binding regions created through a random process,

much like random strings could be generated. Since it is possible that these T cells will

bind to self, they are tested before being leaving the thymus. This entire T cell censoring

process can be thought of as defining a protected collection of self in terms of its

complementary patterns of nonself. [FHS97] Figure 6 presents the concept of detector

generation.

The research team designed a distributed change detection algorithm which:

generates of a set of nonself detectors, uses detectors to monitor important data, and

identifies the location of change when a detector activates [FHS97]. In their computer

immune system, binding between detectors and foreign patterns is modeled as a match

between two strings. Self is defined as a set of equal-length substrings, formed by

71

segmenting the data, and each detector is defined as a string of equal length as the

substrings.

10010010
11111101
01010101
ioioioio^

Self

£ a
ii:

A n A A
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\
\

Distributed within
computer system

00101101

T
10101000

Discarded if
\

matches self \

<«

XT
10101110

Randomly Generated
Nonself Detectors

 ^
1 oioioioi !

Figure 6 -■ Pictorial Representation of the Detector Generation

This system uses "negative detection," generating detectors for byte patterns not

previously seen on the host [DFH96]. Detectors are continuously and randomly

generated, compared against self, and discarded if they match. This approach is easily

distributed because each detector covers a small part of nonself. A set of detectors could

be split up over multiple sites. This would reduce the coverage at a given site, but would

provide better system-wide coverage [FHS97]. To obtain similar results with self

detectors would be much more expensive, because a complete set of positive detectors

would be needed at every site, duplicating efforts and requiring much more

communication between sites.

72

This algorithm is useful for dynamic or noisy data; it is effective for intrusion

detection, as well as virus detection, the system's original intent. Based on the

continuous detector generation and evaluation methods, this T cell based system could be

especially advantageous when used as the adaptive component of a multi-layered

computer immune system.

Table 10 -- Highlighted Features of the Distributed Change Detection

Advantageous Properties

Distributed Detection
The approach is easily distributed because each
detector covers a small part ofnonself; provides better
system-wide coverage

Adaptive
Learning new concepts of self is easy due to nonself
detector generation and evaluation

Disadvantageous Property

Incomplete Set of Detectors
The randomly generated strings may not cover all
possible combinations ofnonself

3.4.3. Distributed Architecture for a Self-Adaptive CVIS

Other researchers [LVM98] at the Air Force Institute of Technology are

investigating a Computer Virus Immune System (CVIS). This system uses the human

immune system as a model for identifying, attacking, and eradicating viruses from

computers and networks. Based on an analysis of the requirements of such a system, this

team proposed a distributed architecture that utilizes Intelligent Agents and Evolutionary

Algorithms to self-adapt to a constantly changing virus population.

As pointed out by this research, there are several obstacles to implementing a

CVIS. Though the human immune system provides a basic model for a computer

73

counterpart, there are many "unmatched" parallels between the two systems. In the

human immune system lymphocytes are distributed throughout the body and act as

independent agents in search of invaders. This method has limitations in a computer

immune system, such as: the number of available system processors, competition

between tasks for processor time, and bottlenecks in accessing shared resources.

[LVM98]

Their proposed CVIS requires distributed control, multi-layer security, diverse

implementations, and self-adaptation in a dynamic software environment. All system

activities should be autonomous and applicable to the various architectures of current

computer systems. [LVM98]

Another challenge in the accomplishment of this type of system is the

implementation of an artificial adaptation mechanism. Computer systems lack the

evolutionary adaptation mechanism as seen in the human immune system. The

development of several components within the CVIS is required, including virus

detection, virus purging, and damage repair. This research led to the conclusion that

computational complexity of such a task would be overwhelmingly difficult for one

system to handle.

To overcome these challenges, this AFIT team proposed a multi-level distributed

architecture with the responsibilities of managing the computational complexity

associated with implementing this system. This was accomplished through the

coordination of autonomous agents at three levels: local, network, and global. Each agent

has a number of goals, a scope of competence, and the ability to collaborate and

communicate with other agents, objects, and humans. Based on human immune system

74

components, agents represent the following functions: detect, classify, repair, update,

communicate, help, kill, and suppress [LVM98]. Figure 7 presents a pictorial view of

this system.

Global Level

Resource Adaptation
Detector Generation
Resource Warehouse

—^

Network Level

Virus Classification
Alert Generation

Metrics Reporting

Messages
V Resource Request

Infected Decoy
Metrics

Messages
Resource

Virus Alert
Local Level

Vulnerability Analysis
Virus Elimination

System Repair
Virus Detection

V
Messages

, Resource Request
Infected File

Figure 7 ™ Pictorial Representation of the Self-Adaptive CVIS

Agents at the local level would be responsible for virus detection, virus

elimination, system repair, and vulnerability analysis. Those agents at the network level

are characterized by a high degree of interaction; they share many resources and are

75

connected by a network. The network agents' purpose is to classify viruses, disseminate

information and alert other agents of viral threats. At the global level, attention is given

to the generation, adaptation and storage of virus information. Once developed, this

information is disseminated to agents at the lower levels. Evolutionary Algorithms (EAs)

are used in this CVIS at the global level for resource adaptation. They are used to

improve the "decoy method" of virus detection, as originally presented by the researchers

at IBM. The AFIT team's approach uses the networks linked to the CVIS as laboratories

for virus evaluation. Using EAs enables a single, dedicated platform at the global level to

mange a large decoy population.

This research combines previous human immune-based virus fighting efforts with

the new twist of self-adaptation. The distributed nature of their system spreads out the

computational burden of immune system tasks, and provides an efficient and effective

CVIS.

Table 11 ■■ Highlighted Features of the CVIS

Advantageous Properties

Network Connectivity

Compartmentalized Domain

Hierarchy of Responsibilities

Information Sharing

Adaptation

A high degree of system interaction through the
sharing of resources and connection by a network
System responsibilities are divided among agents;
agents function independently of each other
Agents are grouped into different levels and interact
together to achieve the responsibilities ofthat level
Provides efficient and effective means for disseminating
virus information
Utilization of a learning mechanism to adapt to an ever
changing virus population

Disadvantageous Properties

Network Connectivity

No Peer-to-Peer
Communication

The system is dependant on the availability of the
network
Systems at the local level can not communicate with
other systems at that level

76

3.4.4. DARPA's Public Health Infrastructure

The Information Technology Office of DARPA presented research on

information survivability, in response to the DoD's reliance on highly integrated and

complex military information systems [Shr96]. Since these systems interoperate with the

commercial computing infrastructure and rely on many of its components, penetration by

unauthorized users can be conducted from virtually anywhere and by anyone. The goal

of DARPA's research was to develop technology to ensure critical information systems

continue to function adequately when attacked [Shr96]. These are large scale, complex

distributed systems, many of which were developed without survivability as a prime

concern. In order to improve current survivability approaches, this team looked to

biological and social models, especially biological organisms, populations and society.

The benefits of individual organisms include barriers to infection and immune

systems, detecting the presence of infection, and attacking and removing the invader.

Other beneficial qualities of organisms include a redundancy and fault tolerance

mechanism and homeostatic functions that maintain critical functions under stress. The

team concluded these same ideas apply at the macro level of populations and societies.

Collectively, the population is fault tolerant to the loss of individuals, and the species

evolves based on which individuals survive the best in their environment. DARPA's

research concentrated in three areas: public health infrastructure, adaptive architecture,

and variability.

The Public Health Infrastructure element includes a set of security and

survivability protocols with the ability to operate with available resources. The

77

infrastructure supports problem solving between components of the system, such as:

decoys deflecting attack, facilitating detection, and aiding with diagnosis; canaries

warning of impending danger; and honeypots drawing attack to immaterial subsystems.

Just as a computer immune system would notice user intrusions into individual

systems, corruption of data, or anomalous system behavior, this public health

infrastructure must detect the symptoms of an attack effectively and efficiently. After

symptoms are detected, the system must be able to disseminate this information rapidly

and comprehensively. Once a part of the system is identified as infected, it must be

"quarantined" so as not to infect other parts of the system. If the attacks increase, the

system must be able to heighten its level of concern and allocate more resources for the

diagnoses of the attack. As information about the attack is uncovered, vulnerabilities and

recovery procedures must be relayed throughout the system.

Many issues accompany the public health model. There are many questions about

the low-level immune system, especially building detectors, detecting attacks, learning

anomalous behavior utilizing artificial intelligence, and keeping attack profiles current

and correct. Issues involving information flow though the public health network include

information control, method of flow, and methods for notification of attack.

The Adaptive Architecture element develops technologies that allocate resources

to critical tasks, allowing the system to function while under attack. This system has a

highly adaptive architecture to guarantee these functions continue with the loss of

resources. This element also develops new models of semantic redundancy allowing

corrupted data to be recovered by inference.

78

The Variability element develops technologies that allow differences between

individual systems, in order to impede unknown threats. These technologies include: a

variety of operating system implementations, randomized communication patterns,

randomized memory layout, randomized allocations and variable operational patterns.

Uniformity is dangerous; if system vulnerabilities were exploited, all machines would be

immediately vulnerable.

These areas of public health infrastructure, adaptive architecture and variability

together provide a high-level model of a Computer Health System; however, they fail to

specify the lower-level details of an individual immune system.

Table 12 -- Highlighted Features of DARPA's Public Health Infrastructure

Advantageous Properties

Secure Infrastructure

Component Communication

Information Sharing

Provides a set of security and survivability protocols
with the ability to operate with available resources
All components can communicate with all other
components through the system hierarchy (vertically)
and peer-to-peer (horizontally)
Provides efficient and effective means for disseminating
virus information

Disadvantageous Properties

Unspecified Detection

Unspecified Adaptation

Unspecified Memory

The ability of the individual detection system to
recognize nonselfis unspecified
The ability of the individual detection system to learn
the structures of specific viruses and adapt to the
changing definition of self is unspecified
The ability of the individual detection system to
efficiently and effectively remember previously seen
viruses is unspecified

79

3.5. The Computer Models

The final portion of this chapter describes the two computer models developed as

part of this research, which utilized some advantageous properties of the models

discussed in the previous sections. The first model is a high level view of a Computer

Health System, utilizing the public health system as a model. This Computer Health

System is utilized for virus detection, though could be applied to other security domains.

This health system includes the second immune model as a component. The second

model is an individual computer immune system, with the virus detection component,

MERCURY.

First, the general characteristics of model building are discussed, as well as the

different types of models that can be used. Next, the Computer Health System is

explained, from a high-level perspective of overall requirements and responsibilities.

Finally, the computer immune system is presented, from a perspective of system

properties. Throughout this explanation, parallels to the public health system and to the

human immune system are drawn.

3.5.1. Model Building

The purpose of building a model is to explain observations made at particular

levels for a given experiment and to possibly serve as a device for predicting what may

occur at a specified spatial or temporal point of interest [Cas97]. A good model is not

80

required to capture all aspects of the system it represents; rather, it should capture the

system's essence [MVL98]. The model should be simple, clear, tractable, and relatively

bias-free [Cas97].

Models can be either formal or informal, depending on their description or

purpose. An informal model describes or represents system observations, components, or

interactions imprecisely [MVL98]. It can help explain observations, but can't make

accurate predictions of future ones. Formal models, however, are more likely to have a

higher predictive power because they are mathematically based and represent the "true"

system with greater accuracy. A formal mathematical system is a collection of abstract

symbols with a set of rules expressing how strings of these symbols can be combined to

form new strings [MVL98].

There are also different categories of models based on their purposes: predictive,

explanatory, and prescriptive. Predictive models enable developers to predict future

system behavior based on the properties of the system's components and their current

behaviors. Conversely, the purpose of an explanatory model is to not predict future

behavior of a system, but rather to provide a framework in which past observations can

be understood as an overall process. Both predictive and explanatory models are passive,

whereas the prescriptive model is active. The prescriptive model offers a top-level

picture of the real world, enabling the developer to vary parameters for analysis. The

following tables summarize the different types of models.

81

Table 13 ■- Summary of Model Types

Formal
Mathematical basis for
representing the "true"
system

Informal
Describes system
observations, components,
or interactions imprecisely

Predictive

A prediction of future system I
behavior based on the j
system's components and I
their current behaviors

Explanatory

A framework in which past
observations can be
understood as an overall
process

Prescriptive
A top-level picture of the real
world, with the ability to vary
parameters \

3.5.2. Modeling a Computer Health System (CHS)

The CHS is an informal, explanatory model based on some essential qualities of

the public health system. Due to the model's informality, not every aspect of the model

will be explicitly stated. Though many parallels can be drawn between the systems, the

CHS framework will not present the complete picture or solution. Rather, it is an

approach to the overall process of detection, prevention, and cure of viruses on computer

systems. Figure 8 presents the pictorial view of this system, its components, and their

responsibilities and interfaces.

82

■$

Computer Health System I

pecialized
Agencies

EU
p^

11010010
■mwm i
10111010
01001011
OO0O01O1
01001010

<^:'- i Peer-to-Peer t

■ Trend Analysis
■ Classification
■ Research
■ Statistics
■ Policy

r, r >

Interfaces i y

JwComputer Health
 '.^«f Infrastructure

Communication
Protocols

A

V
^->-■■■■:■■■■>■'■ ■! Peer-to-Peer HEH^>

■ Specific Analysis
■ Extraction
■ Diagnosis
■ Prevention
■ Cure

System Security
Information Sharing
Component Interface

Ik

Individual System

■ System Analysis
■ Detection*
■ Adaptation*
■ Memory*
■ Elimination
■ Repair

Figure 8 -■ Pictorial Representation of the Computer Health System

83

3.5.2.1. Computer Health System Objectives

DARPA's research suggests the public health system is a highly robust and

survivable infrastructure developed to detect, diagnose, isolate, cure, and prevent

infections. The CHS presented here has the same overall objectives for the protection of

computer systems against viruses.

Table 14 -■ Comparison of Health System Objectives

Objectives of Public Health System

Detect Human Diseases
Diagnose Human Diseases

Isolate Human Diseases
Cure Human Diseases

Prevent Human Diseases

Objectives of Computer Health System

Detect Computer Viruses
Diagnose Computer Viruses

Isolate Computer Viruses
Cure Computer Viruses

Prevent Computer Viruses

3.5.2.2. Computer Health System Requirements

Like the public health system, the CHS is a social enterprise that utilizes current

knowledge in ways that have the maximum impact on the way a computer system

protects against virus invaders. This system identifies computer virus problems through a

preventative "team" approach in order to protect, promote, and improve the "health" of

computer systems, with an emphasis on preventative strategies. The primary goal of the

CHS is to provide a framework for the globally scoped protection of computer systems

against virus invaders. Some of the advantageous properties of the previously discussed

84

immune models are included as requirements for the CHS. These requirements also

improve upon the previously discussed models' shortcomings.

The CHS functions optimally, yet not solely with network connectivity. This

connection provides the most efficient access to virus data and detection resources. Due

to the individual immune systems on each computer, and many paths of connection

throughout the network, this global system does not possess a single point of failure.

Therefore, components can function autonomously with limited, or nonexistent network

capabilities. Using a network connection precipitates the need for a secure

infrastructure. This includes a set of security and survivability protocols that operate

with available resources. These protocols ensure the protection of information as it

traverses through the system's networks.

The system must provide component communication. All components must be

able to communicate with all other components of the system. This communication

includes hierarchical or "vertical" interchanges and peer-to-peer or "horizontal"

connections. Component communication provides the vehicle for information sharing.

This provides the essential means for efficiently and effectively disseminating computer

virus information.

The system is partly based on centralized viral analysis. Specialized computer

health agencies and virus experts are responsible for much of the computer health

objectives. Their main tasks are explained in detail in subsequent sections. This allows

easier coordination and less duplication of virus information and detection resources.

Additionally, the system is partly based on decentralized viral analysis. Each individual

computer immune system develops its own concept of self and adapts to viruses to the

85

best of its ability, with the help of global prevention information and self-adaptability

using MERCURY.

In addition to these requirements, the system also possesses intervention strategies

extracted from the public health system. These intervention strategies can be divided into

three types: primary, secondary, and tertiary.

In the computer sense, primary prevention involves the prevention of the actual

virus, by reducing the exposure or risk level factors. This type of prevention includes

regular disk and system scanning through an antivirus system, and responding to updated

prevention measures, such as virus updates. Secondary prevention takes place if the virus

had infected the system. This prevention would detect and control the virus destruction

in its early stages, perhaps before the virus executed or caused large amounts of damage

to the system. Tertiary prevention would involve repairing the system by restoring it to

the optimal level of functioning following an infection. System intervention at the

primary, secondary, and tertiary levels is a dependant upon the knowledge base of the

computer immune system, the knowledge base of the virus experts, and the effectiveness

and efficiency of the virus information transfer between components in the system.

Primary prevention reduces the number of virus infections, whereas secondary

and tertiary prevention reduce virus predominance by decreasing the "life" of a virus and

minimize its effects. As with public health, approaches emphasizing primary prevention

have greater potential benefit than approaches emphasizing other levels of prevention.

86

3.5.2.3. Computer Health System Services

Many of the public health services translate easily into the computer health

domain. The following chart states a few of the services this global system could

provide.

1. Monitor virus status within the network communities

2. Diagnose and investigate viruses found on computer systems

3. Inform, educate, and empower users about virus issues and

PREVENTION!

4. Mobilize research groups to identify and solve virus problems

5. Develop policies and plans that support virus detection and prevention

efforts

6. Enforce laws and regulations that protect computer systems against

malicious attacks

7. Link users and administrators with specialized agencies and virus

experts

8. Assure a competent computer health workforce

9. Evaluate effectiveness, accessibility, and quality of the infrastructure

and system

10. Research innovative solutions to virus problems

87

3.5.2.4. Computer Health System Functions

As in the public health system, the Computer Health performs three core

functions: assessment, policy development and assurance. The Computer Health System

assesses the needs of the computer systems and networks by establishing systematic

processes that periodically provide information on the status of viruses through the cyber

community. The CHS also investigates virus hazards in the community by conducting

research that identifies the magnitude of viral damage, symptoms, and avoidance. The

CHS must advocate collaborative research efforts, identify resources in the cyber

community, and generate relationships with public and private agencies for the study of

viruses. Another function of the CHS is the development of plans and policies

addressing virus attacks and establishment of goals and objectives that focus on

preventive measures. The CHS is responsible for informing and educating the users and

administrators on computer health, promoting awareness about available antivirus

applications and preventative techniques in order to increase knowledge, attitudes, and

practices about computer viruses.

88

3.5.2.5. Computer Health System Components

Responsibilities are allocated among the four main components of the Computer

Health System: specialized agencies, virus experts, infrastructure, and individual

systems.

3.5.2.5.1. Specialized Agencies

Specialized agencies are organizations or research groups that facilitate

contributions to the virus detection field. These agencies are linked by common goals

and objectives with the specific mission of some aspect of virus detection or prevention.

The relationships among the agencies are informal and collaborative rather than

formalized and centrally directed. The main responsibility of these agencies is to conduct

research and trend analyses of viruses, and develop useful statistics and metrics. Also,

they provide a general classification for viruses, and formalize the methods of virus

detection, extraction, and repair. Lastly, they provide policy guidelines and standards to

establish goals and assign responsibilities within the Computer Health System.

The Center for Virus Control (CVC) is a proposed computer health agency based

on the Center for Disease Control and Prevention. The main goals of the CDC are

surveillance, applied research, and prevention and control. [OUSD96]. The CVC would

be responsible for detecting, investigating and monitoring virus threats, and determining

the factors influencing their occurrence. The agency would be responsible for integrating

89

industry, academia and government research, improving virus security practices. The

CVC would enhance private and government communication about emerging viral

threats, and ensure prompt implementation of prevention and control strategies.

Information dissemination would be a top priority, as would establishing implementation

standards and guidelines.

The Virus Prevention Agency (VPA) is a proposed computer health agency based

on the Federal Emergency Management Agency. The mission of this public health

agency is to provide leadership and support to reduce the loss of life and property and

protect our nation's institutions from all types of hazards through a risk-based,

emergency management program of mitigation, preparedness, response and recovery

[OUSD96]. Applying this to the computer health domain, the agency is responsible for

helping network and computer systems defend against viruses, making virus repair

assistance available to all users, and teaching users and administrators how to protect

against viruses.

3.5.2.5.2. Virus Experts

Within the public health system, many physicians practice in groups where they

can share expenses, medical equipment, and responsibility for emergencies. In the public

health system, group practices, hospitals and other arrangements are called Health

Service Organizations (HSOs) [Ayr96]. This same technique of pooling resources,

personnel and knowledge can be applied to the virus expert component of the Computer

90

Health System. In this system the main responsibilities of the virus experts are:

implementing and teaching preventative techniques, analyzing new viral types, extracting

and diagnosing new viruses, and "curing" the system once it has been infected. These

services provided by the virus experts are globally based and are targeted toward network

systems rather then individual systems. Virus experts may be augmented with automated

systems such as IBM's digital petri dish or MERCURY.

3.5.2.5.3. Infrastructure

Analogous to the public health system infrastructure, the infrastructure of the

CHS is the backbone that protects and carries all the information flowing throughout the

system. The supply of health care resources is an essential concern to the public health

system; whereas, the supply of information is an important aspect of the Computer Health

System. The CHS infrastructure provides the following functions: system security,

information sharing and component interfacing.

The infrastructure must provide system security through three fundamental

objectives. Confidentiality requires that the data in a computer system, as well as the data

transmitted between computer systems, be revealed only to authorized individuals.

Integrity stipulates that the data in a computer system, as well as the data transmitted

between computer systems, be free from unauthorized modification or deletion.

Availability requires that the authorized users of the computer systems and

communications media not be denied access when access is desired. [WPF96]

91

The infrastructure also provides the CHS requirement of information sharing.

Information is shared rapidly and comprehensively between agencies and experts, and

among the population of computer systems. Virus information flows upward when a

system detects or is infected with a virus and flows downward when a virus cure is

discovered or preventative measures are formalized.

The component interfaces throughout the system require interfaces to manage the

information control, method of flow, and methods for notification of attack. These

concerns are analogous to the different types of health delivery systems available in the

public health system. Group medical practices, health maintenance organizations and

preferred provider organizations are all methods for individuals to "connect" to the public

health system, just as communication protocols between and within subsystems enable the

two-way connections between all subsystems and peer-to-peer systems.

3.5.2.5.4. Computer Systems

The final component of the Computer Health System is the individual computer

system, equipped with a computer immune system. This immune system is similar to the

human immune system, in that its purpose is to protect the computer system from

invasion by viruses. The main functions of the individual computer immune system are

system analysis, virus detection, self-adaptation, memory, and virus elimination/system

repair. These functions are described in Section 3.5.1.

92

3.5.3. Modeling a Computer Immune System

Computer scientists hope that in studying the human immune system, new

solutions to combating computer viruses will emerge. There are many properties of the

immune system of interest to a computer scientist. Human immune systems are unique,

meaning individual immunity is derived and adapted; this is a desirable and applicable

property of a computer system, as well. The immune system uses an efficient

decentralized and distributed detection process, which is also of interest in the virus

detection domain. The human system is also very flexible and does not require the

absolute detection of every invader; instead, partial detection allows for quicker

recognition of multiple invaders. This is applicable to partial detection of byte patterns in

an infected file on a computer system. Another very important feature of the immune

system is its ability to detect and react to invaders, or nonself, while not reacting to what

belongs in the body, or self. This property applies to invaders that have been previously

seen, as well as those previously unseen. The human system can learn and remember the

structures of these previously unseen invaders, so that the body's future responses to the

same invader can be faster. [FHS97]

An individual computer immune system is an informal, explanatory model that

captures the essence of the human immune system. Due to the model's informality, not

every aspect of the model will be explicitly stated. Though many parallels can be drawn

between systems, the computer immune system model will not present the complete

picture or solution. While the CHS provides the framework for global protection against

viruses, the computer immune system provides for local detection of these invaders.

93

3.5.3.1. Functions

As introduced in Section 3.5.2.4, there are several desirable functions for a

computer immune system: system analysis, virus detection, adaptation, memory, virus

elimination, and system repair. MERCURY, a prototype of a virus detection component

of a computer immune system, is designed to incorporate three of these functions,

detection, adaptation and memory. The following subsections describe each function,

and, if appropriate, their design in MERCURY.

3.5.3.1.1. System Analysis

The system analysis function provides local prevention from computer viruses.

Analysis is individualized through prevention strategies such as policy enforcement, disk

checking and system scanning procedures, and analysis for viral system calls.

Additionally, this function provides an analysis of normal system activity, in a manner

similar to user profiling utilized in intrusion detection systems [WFP96]. Policies and

procedures are obtained from the specialized agencies and specific preventive measures

are obtained from the virus experts of the Computer Health System. MERCURY does

not incorporate system analysis, but can be integrated with existing systems that provide

this functionality.

94

3.5.3.1.2. Detection

Just as antigens can infect cells in the body through two methods, intracellular and

extracellular, a virus can infect a system in two basic ways. The virus is found within the

system, such as memory, or boot sector or the virus gained access to the inside of a file.

Similar to the human system, a computer system detects a virus through different

methods, dependent upon whether the virus is "extracellular" or "intracellular."

Extracellular Infections on a Computer. Similar to the multilevel defense against

infections in the body, behavior blockers raise a warning when suspicious activity occurs

on the computer. These programs have a sense of typical virus behavior, such as access

to certain system resources and files, just as certain chemical compounds in the blood

know to attach to foreign organisms or toxins and destroy them. Behavior blockers use a

reactive method, since a virus is detected after the computer is infected.

Intracellular Infections on a Computer. Similar to the lymphocytes circulating in

the bloodstream looking for pathogens found in the body, a virus scanning program

would "circulate" through the computer system and compare system and data byte

patterns to those previously seen patterns maintained in a virus database. In the body, the

lymphocytes can not see the pathogen "inside" the cell without the assistance of MHC,

which brings the invader to the cell's surface. In a computer, an infected file does not

present the infection to virus scanner; instead, the scanner must look inside the file in

order to determine if a file is infected.

95

The scanning component of MERCURY, though not fully implemented, would be

responsible for extracting and detecting byte patterns in files. MERCURY'S scanner

recognizes viruses through an exact match of a relatively short sequence of bytes

occurring in the virus, or by a rule generated by the learning component of MERCURY

which specifies a set of bytes, combined using certain operators. Matching a small

portion of the virus is more efficient in time and memory, and it enables the system to

recognize variants.

As a component of MERCURY, a virus scanner was developed to evaluate the

byte patterns inside files. This scanner functions just as the "team" of lymphocytes

would in the human body. As the scanner reads the byte patterns in each file, they are

compared to nonself and self byte patterns stored in the knowledge base. In the body, B

cells circulate through the body, looking to bind with nonself antigens. If nonself is

encountered, the cell is flagged as infected, and the "killer" cells are activated. In the

computer system, if the pattern matches what is known to be a virus, an immune process

is also initiated. The file is "flagged" and the elimination and repair function of the

computer immune system is activated.

3.5.3.1.3. Adaptation

Detection involves the recognition of known viruses, whereas adaptation deals

with previously unknown viruses. In the human immune system, innate immunity

represents the part of the immune system present at birth. In a computer system, innate

96

immunity can be thought of as what is initially learned, supervised or unsupervised, as

acceptable system byte patterns and acceptable system activity. These allowable patterns

and activities could be defined through initial heuristics and analysis. Similar to the work

done by Forrest, databases of these allowable byte patterns and activities could be

constructed.

Adaptive immunity for a computer system, like the human immune system, would

enable the system to recognize and respond to previously unseen viruses. Once an

previously unseen byte pattern is encountered in the computer, the system detectors

determine whether it is a virus or new self, based on the predictive capabilities of current

definitions of self and nonself. If the system detectors are unable to incorporate the byte

pattern into these definitions, the system must seek advice from a virus expert. After the

byte pattern has been identified by the expert, the system incorporates the byte pattern

into the knowledge base so that it can be recognized quickly on subsequent infections.

As a component of MERCURY, the constructive induction engine, HEC was

developed to perform the adaptive function of learning new byte patterns. On a fully

operational system, once a byte pattern is labeled as self or nonself, HEC would

incorporates it into the system's concepts of self and nonself, and update the knowledge

base. As a computer changes, its immune system must adapt. Constructive induction

provides a mechanism to incorporate these modifications and classify them as self or

nonself.

97

3.5.3.1.4. Memory

A computer system must have the ability to remember previous viruses, allowing

a faster response time upon subsequent encounters with the same virus. As a component

of an operational version of MERCURY, a knowledge base could be built that contains

the byte patterns that distinguish between self and nonself. This knowledge base would

be accessed by the scanner and updated by HEC. MERCURY'S current implementation,

however, does not utilize memory external to the constructive induction engine.

3.5.3.1.5. Virus Elimination and System Repair

Once nonself byte patterns have been recognized in a file, the computer immune

system must respond by enabling the elimination and repair function. This can be

accomplished by attempting to reconstruct the file from a checksum database repository,

or by attempting to identify and remove the exact viral code [KSSW97]. While the

purpose of this computer immune function is analogous to the human immune system,

the implementation differs. In the human body, cells are expendable, and can be killed

without affecting the overall function of the system. However, in the computer system,

files can not be "killed," or deleted with the same degree of indifference. MERCURY

does not incorporate elimination and repair, but can be integrated with existing systems

that provide this functionality.

98

3.5.3.2. Autoimmunity

While the purpose of this computer immune system is to protect against foreign

invasion, the recognition capabilities of MERCURY could falter, causing the system to

classify self as nonself. This process would be similar to autoimmunity in the human

immune system.

For example, a common error occurs when the antivirus program reports "false

positives" on legitimate programs. This results from the current manual techniques used

to extract virus byte patterns from an infected file. These current antivirus techniques can

be expected to fail within the next few years with the rapid, accelerating influx of new

computer viruses.

Another problem with detecting viruses in a computer system is that the notion of

self in computers is questionable. Self is not solely the pre-loaded software on a

computer when purchased. Users are continually updating and adding new software, so it

would be unacceptable if the computer immune system were to reject all such

modifications and additions on the basis that they were different from what was on the

system already. The human immune system can usually get away with "presuming the

guilt" of anything unfamiliar, whereas the computer immune system must presume that

new software is innocent until it can prove that it is guilty of containing a virus. [Kep94]

Autoimmunity could occur in two ways within MERCURY. The scanner could

detect a previously unseen self byte pattern as nonself. Additionally, if the self and

nonself files are similar, HEC could learn incorrectly. This could be treated proactively

or reactively. Proactive treatment would require the user to interface with MERCURY,

99

through the addition of new examples. The reactive treatment involves adding the new

system files and waiting for the byte patterns in this file to be detected. After the new

byte patterns are detected, they could be sent to HEC to relearn the self concept.

Although an important function of a computer immune system, MERCURY does not

allow for user intervention, but could be modified if needed.

3.5.3.3. Computer Immune System Interfaces

A computer immune system should contain the five functions discussed in the

preceding sections. MERCURY was designed to incorporate three of these functions,

detection, adaptation and memory. This immune system decomposition necessitates

interfaces between MERCURY and the other systems responsible for analysis and

elimination/repair. Coordination between these systems is required to ensure that the

proper prevention strategies are used and that the proper response is taken following

detection of the virus. The body uses chemical attractions and signals to coordinate the

components of the immune system; the computer immune system must also coordinate its

functions.

3.6. Summary

This chapter explained several analogies between a computer system and the

human immune system by presenting several computer immune models. First,

100

discussions of the human immune system and the public health system were presented,

with research trends in the area of computer immunology addressed. The CHS was

presented as an informal, explanatory model of the public health system; the computer

immune system was presented as an informal, explanatory model of the human immune

system. MERCURY'S role in the computer immune system was defined. Chapters Four

and Five provide general and detailed descriptions, respectively, of this virus detection

component.

101

4. System Design

4.1. Overview

Chapter Two described current methods of virus detection, concepts of

constructive induction, and research trends utilizing machine learning for computer

security and detection. This chapter conjoins these areas to form the basis of MERCURY,

the virus detection component of a computer immune system.

Chapter Three presented the Computer Health System, a global approach at virus

prevention, based on the public health system. This approach identified the requirement

for an individual computer immune system, based on the human immune system. Chapter

Four focuses only on MERCURY and the design fundamentals of this virus detection

system.

The methodology provides a framework for MERCURY by defining the

objectives, requirements, and architecture of a fully operational detection system. The

major subsystems and processes involved are decomposed and system integration and

testing are addressed. The detailed descriptions of the subsystems and processes included

in the implemented prototype of MERCURY will be provided in Chapter Five.

102

4.2. General Description

A system is a set of interrelated systems, or subsystems, working together toward

some common objective [B1F90]. MERCURY is a virus detection system, composed of

a virus scanner, a constructive induction based learning engine named HEC, and a

knowledge base. This implementation is a proof-of-concept; HEC is a model of the

learning process that provides the scanner with byte signatures that distinguish between

self and nonself. This system tests the hypothesis that constructive induction can be

effectively applied to the virus detection domain.

4.3. Objectives

An effective system engineering process begins by identifying a need, based on a

want or desire for something, possibly arising from a deficiency [B1F90]. Current viral

detection techniques are reactive, labor intensive for virus researchers, have a slow

response from time of discovery until the cure is prescribed, and require user intervention

to update the virus signature database [Kep94]. Due to these recognized inefficiencies,

the need was identified for an improved technique that combats these virus detection

problems.

Once the need is identified, system objectives must be explicitly defined and

understood so that the system provides the desired output for each given set of inputs.

The objectives of this detection system match the three most prominent functions the

human immune system uses to defend the body against invasion. The objectives of

103

MERCURY are to: detect viruses, adapt to changes in self through learning, and

remember previously seen viruses.

Table 15 -- MERCURY'S Objectives

Detection

Adaptation

Memory

The ability of the detection system to recognize nonself
The ability of the detection system to learn the structures of specific
viruses; the detection system adapts to the changing definition of self
The ability of the detection system to efficiently and effectively remember
previously seen viruses, speeding the response to subsequent encounters

4.4. Requirements

Once system objectives are determined, specific requirements of the system must

be defined. Requirements are decided prior to development so that expected system

outputs are known and can be tested [B1F90]. A full implemented version of MERCURY

should meet the following requirements:

1. Detect previously seen self in the system

2. Detect previously seen nonself in the system

3. Isolate and flag previously unseen files in the system

4. Send indiscernible files to virus experts

5. Relay virus information to the constructive induction engine for self-
adaptation and learning

6. Update the knowledge base of virus signatures base on new concept of
self

7. Send information about damaged files to the cleaner subsystem,
outside of the MERCURY system

104

4.5. Architecture

After the system requirements are established, they are utilized to choose a design

approach [B1F90]. Choosing a system architecture is a design approach that defines a

system in terms of components, interactions and correspondence to system requirements

[ShG96]. Implementing a particular architecture benefits the system's development and

maintenance by defining the commonalties, identifying areas of reusability, and

communicating the design to others. Architectures can be chosen by analyzing the

applicability of different architectures and system requirements.

MERCURY'S requirements involve collecting, manipulating, and preserving

large bodies of complex virus information; overall, the system exhibits many qualities of

a shared information system. This architecture supports independently processing

subsystems interacting through a shared data store. When fully implemented,

MERCURY subsystems would act independently; HEC and the virus scanner would each

have processes that run autonomously within their respective subsystems. These

subsystems would interact through a central knowledge base of virus information.

The definition of a system is not complete without considering its position in a

larger, higher-level system. A virus detection system, such as MERCURY, would be a

component of a individual computer immune system. This computer immune system is a

component of the Computer Health System, designed and explained in Chapter Three.

These systems protect computer systems against viruses through the detection, diagnoses,

isolation, cure, and prevention of virus infections.

105

An individual computer immune system is responsible for system analysis,

detection, adaptation, memory, and virus elimination/repair. MERCURY encompasses

the functions of detection, adaptation, and memory, interfacing with the system analysis

and virus elimination/repair components. Within MERCURY, there are three

subsystems: virus scanner, constructive induction engine (HEC), and the knowledge base.

The simplified view of the Computer Health System, and MERCURY'S position within

it, are depicted in Figure 9.

4.6. Description of Subsystems

The following sections describe MERCURY'S three subsystems, by providing

their general descriptions, and defining their objectives, requirements, and architecture.

4.6.1. Constructive Induction Engine (HEC)

HEC is a software program developed as the constructive induction based

learning engine. HEC is needed to drive the learning process for MERCURY, enabling

the system to learn the definition of self and nonself and adapt to changes. The

objectives of a constructive induction engine are to: generate, order, evaluate, and

incorporate hypotheses [Gun91]. Hypothesis generation involves the creation of

hypotheses based on predetermined rules and operators. Hypothesis ordering serves as a

filter, identifying the most and least promising hypotheses. Hypothesis evaluation tests

106

"£ Computer Health System

Specialized
Agencies

Computer Health
Infrastructure

^

Figure 9 - System Hierarchy

hypotheses to see if the goal of the system is achieved through their use. Hypothesis

incorporation integrates the hypotheses determined to work properly into the rule base.

With these subsystem objectives determined, the specific requirements and

expected outputs of a fully operational version of HEC are defined as follows:

107

1. Read-in a set of files identified as nonself or self

2. Use selective induction methods to generate all possible hypotheses
from these files

3. Order and evaluate these generated hypotheses based on their abilities
to distinguish between self and nonself

4. If generated hypotheses do not distinguish between self and nonself
with a desired level of accuracy, use constructive induction methods to
construct new hypotheses

5. Order and evaluate these constructed hypotheses based on their
abilities to distinguish between self and nonself

6. Iterate through the constructive induction process until accepted level
of accuracy is obtained

7. Output an accepted set of detectors, based on the hypotheses which
best define the concepts of self and nonself

System architectures may be further refined as architectural subsystems. These

subsystems are often developed independently, so they can be reused in different contexts

[ShG96]. Similar to its "parent system," HEC exhibits many qualities of a shared

information system since its main responsibilities are collecting, manipulating, and

preserving large lists of byte pattern information. The processes of this subsystem that

manipulate hypotheses are independent of each other, run in a fixed sequence until

completion, and pass the hypothesis list to the next process for computation.

4.6.2. Virus Scanner

The virus scanner subsystem is needed to scan system files for viruses. The

scanning method of virus detection was chosen over the other antivirus methods due to its

108

ease of programming, modifiability, and function. Its simplicity is best suited for this

proof-of-concept design to improve virus detection. The objectives of the virus scanner

are to: scan system files for nonself, accept previously seen self, reject previously seen

nonself, and flag previously unseen byte patterns, which could represent nonself.

With system objectives determined, specific requirements and expected outputs of

a fully operational virus scanner, within MERCURY, are defined as follows:

1. Read byte patterns from system files

2. Access the byte patterns maintained in the knowledge base

3. Compare system byte patterns to those in the knowledge base

4. Accept files with self byte patterns from the knowledge base

5. Reject files with nonself byte patterns from the knowledge base

6. Question files with byte patterns not contained in the knowledge base

7. Send questionable files to the virus expert

The expected output from this subsystem is a decision to accept the file as self,

reject the file as nonself, or flag the file as indiscernible, based on current knowledge.

The virus scanner follows the organization of a main program/subroutine

architecture [ShG96]. The main program acts as the driver for the subroutines, providing

a control loop for sequencing through the subroutines in a defined order. The virus

scanner calls a read subroutine, which inputs all signatures from the knowledge base,

then calls a locate subroutine, which finds all the files in system to be compared. Finally,

it calls a compare subroutine, which compares the system file byte patterns to those in the

signature list.

109

4.6.3. Knowledge Base

If fully implemented, MERCURY would utilize a knowledge base, or data

repository that maintains all byte patterns used to define the concepts of self and nonself.

This subsystem is needed to store and transfer information between the learning engine

and the virus scanner. The objectives of the knowledge base are to maintain byte

patterns, to accept data input from the constructive induction engine, and to provide

signature access to the virus scanner. The specific requirements of the knowledge base

are the ability to:

1. Maintain the data in the form of a signature list

2. Accept inputs from HEC in the form of a list of detectors

3. Provide read-only access to the virus scanner

The expected output from this subsystem is a database of signatures. The

knowledge base does not generate any actions on its own, but instead responds to

requests to store and access data.

4.7. Dynamic Structure of MERCURY

A system can be understood by examining its dynamic structure, which represents

control information such as events, states, and operations occurring within a system. An

event is a signal that something has happened. A state represents the system in the

interval between events and specifies how events are interpreted. A transition between

states represents the response to an event and may include actions and events to send to

110

other system components. A transition may also contain guard conditions, which control

whether a transition is allowed to occur. An action is an automatic operation in response

to an event; one type is sending an event outside the system. A state diagram is a graph

of states and transitions labeled by events. [RBP91]

The overall dynamic structure of a fully implemented version of MERCURY is

depicted in the state diagram in Figure 10. The current prototype of MERCURY does not

fully encapsulate this dynamic structure. This research was concerned with developing a

proof-of-concept of the applicability of constructive induction to this domain. Therefore,

development efforts focused on the inductive learning foundations of HEC.

The first state of MERCURY is "scanning the system for viruses." While

scanning, if MERCURY encounters files with known byte patterns of self that are

contained in the knowledge base, it continues. If MERCURY encounters files with at

least one known nonself byte patterns it sends the "eliminate and repair message" to the

elimination/repair system and continues scanning. If MERCURY locates a file with no

byte patterns from the knowledge base, it sends the "identify file message" to the virus

expert system and continues scanning. Once the virus expert has classified the file as self

or nonself, MERCURY sends the classification and the file to the induction engine

(HEC). MERCURY also sends the "eliminate and repair message" to the

elimination/repair system if the file was identified as nonself. While the system

continues to scan for other nonself files, HEC relearns the concept of self. It remains in

this state until the learning process is complete and the new list of detectors is formed.

This research assumes that learning will be possible with the given methods of

selective and constructive induction. There may be cases when learning is not possible,

111

such as inconsistencies in the classification of examples. Once this process is complete,

MERCURY enters the "update knowledge base" state of the system. During this state,

scanning temporarily stops and the knowledge base accepts inputs from the induction

engine, updating its signature list. Once the update is complete, MERCURY re-enters the

"scanning the system for viruses" state and continues scanning for viruses, utilizing the

new signature list.

Event: Encounter known self OR nonself
Guard: At least oneße byte pattern in knowledge base
Action: Continue scanning
Send: "Eliminate and repair message" to the cleaner

system if file is nonself

Event: Encounter previously unseen resource
Guard: No file byte patterns in knowledge base
Action: Continue scanning; Await instructions
Send: "Identify file message" to expert system

Event: Update complete
Action: Continue scanning

/

Scanning System
and Awaiting

Response

Updating
Knowledge Base

\
Event: Identity of indiscernible file determined
Action: Send Information about file to

induction engine (HEC); Continue scanning
Send: Alert Cleaner resource if file is nonself

z
Event: Learning process complete
Action: Send updated information
Guard: Detector List formed

\ ^L
Scanning System
and Relearning
Concepts of Self

and Nonself

T
Event:
Guard:
Action:

Learning process not complete
Detector List not formed
Continue learning; Continue scanning

Figure 10 -- MERCURY'S Dynamic Structure

112

To further understand the dynamic structure of MERCURY it is helpful to study

the dynamic structure of MERCURY'S main component, HEC. The dynamic structure of

HEC is depicted in the state diagram in Figure 11. The current prototype of HEC does not

fully encapsulate this dynamic structure. This research was concerned with developing a

proof-of-concept of the applicability of constructive induction to this domain. This

prototype is not optimized enough to be utilized in a fully operational system.

Additionally, the "constructing detector list" state is not implemented.

The first state of HEC is "gathering examples." In this state, the engine reads in

byte patterns from the provided example files identified as self or nonself. Next, HEC

enters the "generating hypotheses based on selection methods" state, where it forms a list

of hypotheses using predefined methods of selective induction. Once this hypothesis list

is complete, the system begins "evaluating and ordering hypotheses." This state tests and

ranks the ability of the hypotheses to distinguish between self and nonself, given as a

score. This score, which measures the ability of the hypothesis to classify many

examples correctly, is discussed in Section 5.3.2. If one or more hypotheses produce an

acceptable score, the system generates a signature list, based on these hypotheses and

enters the "constructing detector list" state. The system utilizes this list to update the

knowledge base and redefine the concepts of self and nonself. If the hypothesis or

hypothesis group does not produce an acceptable score, HEC enters the "formulating

hypotheses based on construction" state, where it forms new hypotheses through

constructive induction methods. These hypotheses are formed by combining previously

generated hypotheses, using a predefined set of operators. After the combinations are

complete, a constructed hypothesis list is passed back to the "evaluating and ordering

113

hypotheses" state, where the score for each new hypothesis is tested and compared. HEC

will continue to construct and evaluate hypotheses until it achieves acceptable score or

until the system times out. All design considerations are discussed in Chapter Five.

Event: Read Byte Patterns From Files
Action: Append Example list

(•>
Gathering
Examples

Event: All Examples Gathered
Action: Pass Example list

Generating
Hypotheses
via Selection

Methods
v J

Event: Last Hypothesis Generated
Action: Pass Generated Hypothesis list

Event: All Hypotheses Ordered
Guard: Score Unacceptable
Action: Pass a Hypothesis List

Evaluating and
Ordering

 ►/

Hypotheses

V

Formulating
Hypotheses via
Construction

Methods

Event: All Hypotheses Ordered
Guard: Score Acceptable
Action: Pass Hypothesis List ^

Event: All Hypotheses Constructed
Action: Pass Constructed Hypothesis list

Constructing
Detector

List

Event: List Complete
Action: Update Knowledge Base

Figure 11 -■ HEC's Dynamic Structure

114

4.8. Description of Data Flow

In addition to understanding the dynamic structure of MERCURY, it is also

important to recognize the flow of data through a system. The data flow diagram in

Figure 12 provides an overall view of the system by presenting the origination and

destination of data and the processes that transform them [RBP91]. It shows the

sequences of the transformations performed, as well as the external systems affecting the

computation. Processes are depicted as circles, dataflows are depicted with arrows, and

data stores are depicted with parallel lines. The current prototype of MERCURY does not

fully implement this data flow. HEC does not fully interactive with the knowledge base

and scanner, data flow is constrained within this system. Additionally, this design

includes an incremental learning mechanism, which has not been incorporated into HEC.

An operational version would complete these interactions.

MERCURY'S first process scans the system by comparing known byte patterns

from the knowledge base to byte patterns from files in the system. The next process

determines if an unclassified file is self or nonself, through a virus expert system. Once

the file has been identified as self or nonself, the file and the virus expert's classification

are transferred to HEC. This adaptive component will induce a detector for the file that is

consistent with the existing definitions of self and nonself. Upon completion of this

process, the new detector is transferred to the knowledge base, in the form of byte

patterns.

115

■ System Files Virus Expert

Figure 12 -- MERCURY'S Dataflow Diagram

4.9. System Integration and Testing

The high-level integration of MERCURY involves matching the inputs to outputs

between the major subsystems: HEC, virus scanner, and knowledge base. This

integration step is necessary for the operational version of MERCURY. The virus

scanner must be able to access the byte patterns in the knowledge base. The virus

scanner and the inductive engine must be to communicate through the virus expert and

the knowledge base. Figure 13 loosely describes the exchange of data between the

subsystems, depicted as black boxes, with notional inputs and outputs.

116

OlOiOOlOlOlO!1010101OlülOOlüOOOÖlOi10101
010101.10101OIÜIOIOOIOOOOOIOI1010111.1010
OlOiOlOlOlOOiüOOOül.OJ 101.011110101101ÜÜ0
10100100000.101 loiüi irimormioooiou.
OOOlOi 101011110101 loioooioiol
01011.110101101000101.01001011
0101101000101010010110101010'
OOOlOIOlOOiOllOlO,. m File

Virus Scanner

01011010001010I0010110101010101001
illOlülOlülOOlülOlOi

.01010110101010
i) 100100
taui

Knowledge Base
i.OOlOilOlOlOiOlOKK
01010101010010)010.
I!iiP>A!Ainicu Uli0]

I MM I
HMMH

l Uu^uTmiuuuimT
0101111.0101101000
01011010001010100
00010! 01.0010! 1010
01101010101010010
01010100101010110
01010101010101010. ■-,-..-■■-.ra^^,m—^
OlOlOiOlOlOOlOOÜOOlOl 10101 lliülOllOlOOOlOlOiOOlOllOlOiOIOlül. 00101.01011.0101010
lÜlOOlOOOOülOllOlOll 11.01011.01Ü0010I0100101101010101.01Ü0101Ü1011()101Ü1.0101Ü010

01010101
00001010
11100101

1010

/OOION
101111

10101101

HEC
€0010101001

1.0100101101.01
101101010101010

1011010010101011

Figure 13 -- MERCURY'S Integration

Testing of the fully operational version of MERCURY should occur in several

phases. First, each of the subsystems should be tested as independent units, to assure

individual requirements were met. Once each unit is determined to function properly,

each of the three interfaces should be tested: HEC's interface with the knowledge base,

the virus scanner's interface with knowledge base, and virus scanner's interface with

HEC, through the virus expert. After this testing is complete, the entire system should be

tested. While testing the system, the following should be considered:

117

1. Overall system objectives and requirements were met

2. Subsystem objectives and requirements were met

3. System and subsystem outputs are valid

4. System and subsystem processes operate accurately and efficiently

5. Data integrity was maintained throughout the system

4.10. Summary

The Computer Health System, presented in Chapter Three, identified the need for

an individual computer immune system. This chapter focused on its main component,

MERCURY. The design presented here provided a high-level description of an

operational version of MERCURY, by defining its objectives, requirements, and

architecture, the major subsystems and processes involved, and their integration and

testing. Deviations between this proposed design and the prototyped implementation

were noted.

An important aspect addressed in this chapter was the dynamic structure of

MERCURY, detailing the system states and the sequences of actions and events with

trigger transitions. Within MERCURY, there is a constant flow of data between the

subsystems. This chapter discussed data origination and destination, as well as the

integration required to enable transmission between subsystems. Finally, the levels of

testing were briefly discussed. Chapter Six provides specific information about the types

of tests conducted with the prototype.

118

The detailed descriptions of design decisions, tradeoffs, and limitations for each

subsystem and process within MERCURY are provided in Chapter Five. Chapter Six

discusses the testing methods utilized to validate and verify the output of MERCURY

and provides the results of the testing.

119

5. System Implementation

5.1. Overview

Chapter Four presented the high-level description of an operational version of

MERCURY. This chapter highlights the prototyped implementation of this proposed

design. This chapter provides a detailed description of the components and processes

within the prototyped version of MERCURY, including the prototyped versions of its

three main components: the constructive engine, the scanner, and the knowledge base.

Each of these components is represented abstractly, not practically, in the system. The

system components are explained in terms of their functions, design decisions and

corresponding advantages and disadvantages, tradeoffs and limitations, complexity, and

modifiability. Chapter Six presents the results of the testing of MERCURY. Chapter

Seven presents the conclusions of this research.

5.2. Definitions

Several terms will be used extensively in the discussion of the detailed design.

This section clarifies their meaning in relation to the detection system:

120

Signature A series of bytes from a file that distinguishes self for

nonself.

Hypothesis A candidate signature formed by HEC. A hypothesis is

composed of a label, features, the generation method, and a

score that indicates the "goodness" of the hypothesis.

Example A labeled instance of the concept to be classified. In this

system an example is a file that is labeled as self or nonself.

Label A flag that indicates whether the example is an instance of

self or nonself. The label is also used to flag whether the

hypothesis classifies self or nonself.

Attribute A byte from a file. A byte is composed of 8 bits, represented

by logical IsandOs.

Feature A sequence of 16 attributes that can be used to identify a file

as self or nonself. The absolute position of the attributes is

not considered, although relative position is used by the

selection rules. A hypothesis generated by construction

contains multiple features, while a hypothesis generated by

selection contains one feature.

Generation The series of steps that were used to create the features.
Method

Concept An abstraction that a file belongs to a class. The concept

space of this research is self and nonself.

121

5.3. Construction Induction Engine

HEC develops signatures for both self and nonself files. Self signatures are used

to classify files currently on the computer. Nonself signatures store information about

previously seen viruses. The use of self and nonself detectors allow for extensibility

within the computer immune system by allowing the ability to share virus information

across computer systems. This capability is analogous to a vaccination shared among a

population, in order to prevent the spread of disease.

The constructive induction engine is responsible for providing MERCURY'S

virus scanner the signatures needed to distinguish self from nonself. HEC performs the

four constructive induction processes that were discussed in the literature review:

hypothesis generation, evaluation, ordering, and incorporation. The following sections

cover the implementation of these processes and the required design decisions.

5.3.1. Hypothesis Generation

Hypothesis generation involves the creation of hypotheses based on

predetermined rules and operators. HEC creates hypotheses based on two methods:

initial selection of attributes from an example file, or construction based upon the

features of two existing hypotheses from the same concept. HEC creates hypotheses by

selective, then constructive induction. The following subsections describe the notion of a

hypothesis, explain the selection rules and define the constructive operators and

generation grammar.

122

5.3.1.1. Hypothesis

A hypothesis is a candidate solution to the problem the system was assigned to

solve; however, more than one hypothesis may be needed to solve a problem. Inductive

systems are based upon the creation, manipulation and evaluation of hypotheses.

Hypotheses in HEC represent a candidate signature, or a sequence of bytes that identify a

file as either self or nonself.

In HEC, a hypothesis is composed of a label, feature, generation method, and

score for effectiveness. The label indicates whether the hypothesis classifies self or

nonself. During creation of a hypothesis by a selection rule, the hypothesis' label is

given the same value as the example. A feature is a sequence of 16 bytes that may

uniquely identify the example. This size was chosen based upon research done at IBM.

This research empirically determined that a 16 byte signature is sufficient to provide a

high detection rate with a false positive probability of less than 0.5% [KeA94].

Additionally, 16 bytes is the signature size used in current virus research, as noted in the

industry publication Virus Bulletin [KSSW97]. The generation method explains how the

hypothesis was created; this information is needed during evaluation and by the scanner.

The score for effectiveness measures how effectively the hypothesis distinguishes

between self and nonself. This score is discussed in the hypothesis evaluation subsection.

Hypotheses are stored as a list of records. The list data structure was chosen for ease of

manipulation. The record for each hypothesis contains three fields, label, method, and

score.

123

This research hypothesized that a series of bytes can be used as an effective

inductive feature to distinguish between self and nonself in a file. Other features could be

used for this purpose, notably system calls or system state. Different antivirus programs

have been created that use these features to determine the existence of viruses in a

computer. MERCURY utilizes a scanner type antivirus program, since this type

effectively recognizes byte signatures in files.

5.3.1.2. Example Set

The example set is a collection of files that are labeled as instances of self or

nonself. Through the inductive process, HEC seeks to create signatures which classify

members of the example set as self or nonself. Some researchers use the term training set

in lieu of example set, since the examples are used to train the system in the problem

area.

The example set is specified by a file that contains a listing of the file names and

associated self or nonself labels. Self and nonself examples are included in the example

set to ensure that signatures for each concept are induced from examples. Another

technique would include examples from one concept only, allowing the system to detect

members of the other concept as deviations. A system that trains on one concept would

need to learn the most general hypothesis, while a system that trains on all possible

concepts can learn a more specific hypothesis [Hau87].

124

5.3.1.3. Selection Rules

HEC begins as a selective induction system; it only selects existing attributes to

describe the concept. Any rule that extracts bytes from the example can be used for

selection. Possible selection rules include: selecting bytes from a certain portion of a

file, selecting random bytes from a file, selecting certain chunks from a file, selecting

bytes through a sliding window moved across the file, or selecting every Nl byte.

Based upon storage and computational limitations and constrained by the scope of

this research, selection rules were limited. HEC uses three selection rules, chunking,

sliding window, and every other byte sliding window. Table 16 explains these rules.

Table 16 -- Selection rules

Rule Description # Hypotheses Created1

Chunking Selection
This rule breaks an example into non-
overlapping segments containing an equal
number of bytes.

N/K

Sliding Window
Selection

This rule divides an example into
overlapping segments containing an equal
number of bytes.

N-K+l

Every Other Byte
Sliding Window
Selection

This rule divides an example into
overlapping segments, extracting every other
byte from each segment until the specified
number of bytes are selected.

N-(2K-1)

By way of illustration, Figure 14 shows how the selection rules create hypotheses from

the examples.

1 N is the number of bytes in the example. K is the number of bytes in each feature field of the hypothesis.

125

Chunking Selection from a File

01010100010111110101011111010151 01110100 01011011 01010011 11011101 11010101 01110100 01011111 01010111

Hypothesis One:
0101010001011111
01010111 11010101 Hypothesis Two:

01110100 01011011
01010011 11011101 Hypothesis Three:

1101010101110100
0101111101010111

Sliding Window Selection from a File

01010100 01011111 01010111 110101O1 01110100 01011011 01010011 11011101,11010101 01110100 01011111 01010111
• \L~ - J 1 I

Hypothesis One:
0101010001011111
0101011111010101

• • •

Hypothesis Nine:
1101010101110100
0101111101010111

Every Other Byte Sliding Window Selection from a File

Q1010100 01011111 01010111 11010101 01110100)01011011 01010011,11011101 11010101 01110100 01011111 01010111|

Hypothesis One:
0101010001010111
0111010001010011

• • •
Hypothesis Six:
0101101111011101
01110100 01010111

Figure 14 — Selection rules

126

5.3.1.3.1. Bias

The choice of selection rules is a form of bias since these rules are based upon

background knowledge gained from other antivirus research. Sliding window selection is

similar to the current method of choosing byte signatures for a scanner based antivirus

program. These methods try to find a series of bytes in a file that can be found anywhere

in the file. Chunking selection was included in this research since this rule produces

features that are a subset of those produced by sliding window selection. Every other byte

sliding window (EOSW) selection was included in this set of selection rules to increase

the probability of capturing patterns across a greater number of bytes. This form of

selection could be interpreted as a form of construction, since these selection rules

combine attributes through conjunction, creating a new feature.

5.3.1.3.2. Process / Algorithm

HypoList = []

Read in file and associated label

Use chunking selection rule to create hypotheses from file

Use sliding window selection rule to create hypotheses from file

Use every other byte sliding window selection rule to create

hypotheses from file

HypoList = hypotheses from chunking, sliding window and every

other byte sliding window

Figure 15 -- Algorithm for Selecting Hypotheses

During the first hypotheses generation process, files from the example set are read by

HEC. Each selection rule is applied to these files, resulting in a list of hypotheses.

127

5.3.1.3.3. Computational Complexity

Computational complexity captures the order of growth of an algorithm and gives

a simple characterization of the algorithm's efficiency. This measure allows computer

scientists to compare the relative performance of algorithms, identify areas of

improvement, and highlight expected pitfalls during execution [CLR90].

Each selection rule is applied to each file from the example set. The number of

hypotheses selected is the important factor in the computational complexity of selection.

Based upon Table 16, the computational complexity of selection is O(n-k), or linear.

5.3.1.4. Hypothesis Construction

The other method of hypothesis generation in HEC is hypothesis construction.

Hypotheses are constructed by combining existing hypotheses through constructive

operators. This constructive process can be repeated if "better" hypotheses are needed.

Initially, hypotheses are constructed solely from selected hypotheses, although

constructed hypotheses can be used as input for later iterations of construction.

128

5.3.1.4.1. Constructive Operators

Constructive operators create new hypotheses by specifying relationships among

features of existing hypotheses. These operators can manipulate the features through

logic, mathematics, statistics, heuristics, or a variety of other means.

HEC uses three logical operators and two spatial operators. The logical operators

perform a Boolean comparison of the existence of two features. The three logical

operators are AND, OR, and XOR. These operators input two hypotheses with the same

label and the same selection method. The constructive process outputs a single

hypothesis that captures the essence of: both features in a file, one feature or another or

both are in a file, or one feature or another has to be in the file, but not both

simultaneously. Given N hypotheses, each logical operator will construct C(N,2) or N

choose 2, hypotheses. Figures 16 through 18 illustrate the logical operators constructing

a new hypothesis from two existing hypotheses.

Hypothesis One:
01010100 01011111
01010111 11010101

Hypothesis Two:
01110100 01011011
01010011 11011101

AND

Constructed
Hypothesis:

01010100 01011111
0101011111010101

AND
01110100 01011011
01010011 11011101

Figure 16 -- Pictorial Representation of the AND Operator

129

Hypothesis One:
01010100 01011111
01010111 11010101

Hypothesis Two:
01110100 01011011
01010011 11011101

Constructed
Hypothesis:

01010100 01011111
01010111 11010101

OR
01110100 01011011
01010011 11011101

Figure 17 -- Pictorial Representation of the OR Operator

Hypothesis One:
0101010001011111
01010111 11010101

Hypothesis Two:
01110100 01011011
01010011 11011101

Constructed
Hypothesis:

0101010001011111
01010111 11010101

XOR
0111010001011011
01010011 11011101

Figure 18 ~ Pictorial Representation of the XOR Operator

The spatial operators compare the relation of the features' relative locations in a

file. The two spatial operators are BEFORE and DISTANCE. These operators input two

hypotheses with the same label, the same selection method, and created from the same

example file. The operators output a single hypothesis that captures the idea that one

feature is before the other feature, or that one feature must be a certain number of

attributes, or bytes, away from the other feature.

130

Hypothesis One:
01010100 01011111
01010111 11010101

File

K01 010100 01011011 01010011 11011101
J01010100 01011111 01010111 11010101]

Hypothesis Two:
01110100 01011011
01010011 11011101

11010101 01110100 01011111 01010111
01010100 01011111 0101011111011101
101110100 01011011 01010011 110111011

M1010101 01110100 01011111 01010111

Constructed
Hypothesis:

01010100 01011111
01010111 11010101
COMES BEFORE
01110100 01011011
01010011 11011101

Figure 19 - Pictorial Representation of the BEFORE Operator

Hypothesis One:
01010100 01011111
01010111 11010101

File

101010100 01011111 01010111 11010101

Hypothesis Two:
01110100 01011011
01010011 11011101

01010100 01011011 01010011 11011101

11010101 01110100 01011111 01010111
01010100 01011111 0101011111011101

J 1110100 01011011 01010011 110111011
11010101 01110100 01011111 01010111

Constructed
Hypothesis:

01010100 01011111
01010111 11010101
IS 8 BYTES FROM
01110100 01011011
01010011 11011101

Figure 20 - Pictorial Representation of the DISTANCE Operator

The distance between features is based upon the number of bytes between the last

feature of the first hypothesis and the first feature of the second hypothesis. This method

does not account for hypotheses with interleaved features. Given N hypotheses, each

spatial operator will construct C(N,2) or N choose 2, hypotheses. Figures 19 and 20

131

illustrate the relation between the new constructed hypothesis and the original hypotheses

from which it was formed.

5.3.1.4.2. Bias

Several biases were used in determining whether to apply a constructive operator

to two hypotheses. The first bias only allows construction on hypotheses from the same

concept as determined by the label. This bias ensures that the hypothesis' label is not

assigned randomly; rather, the label is based upon previous information.

Another bias limits construction to existing features, instead of allowing randomly

generated features. During the selection process, HEC extracts all possible features from

the file based upon the selection rules. Randomly generated features are not guaranteed

to be found in the example files. Randomly generated features that are found in the

example files are duplicates of existing selected features. Since randomly generated

features would not provide any new information or insight, they are not used in HEC.

From a system perspective, scanning for randomly located byte patterns is unnecessarily

complex, compared to a methodical approach.

Another bias limits the application of operators to hypotheses created through the

same selection rule. This bias was included in the system to limit the different methods

of file reading the virus scanner would need to use when searching for a detector in a file.

This bias also reduces the number of constructed hypotheses. Finally, removing the

possibility of combining selection rules in a hypothesis aids in isolating and analyzing

whether a particular constructive operator improves the performance of HEC. The main

132

objective of this research was to demonstrate the applicability of constructive induction to

virus detection; therefore, this bias simplified the testing of this objective. It simplified

testing by concentrating attention on the effect of operators used for construction, rather

than the effects of combining selection rules.

The choice of constructive operators is based upon background knowledge of the

binary structure of executable programs and virus research. The logical operators

account for multiple, or restricted virus characteristics. Logical operators also account

for common information that can be found in uninfected programs. The spatial operators

account for the positioning of virus characteristics and nonvirus characteristics in an

infected file.

Bias also restricted the application of the operators to two hypotheses, based upon

the example file from which the hypotheses were derived. The first operator bias

involves the AND operator. The AND operator is only applied to hypotheses with

features from the same file. Since features are derived from an example file, the selected

hypotheses are guaranteed to detect at least one example correctly. Without this bias, it is

possible to create hypotheses using AND that do not classify any examples, reducing

system performance when compared to selection. Another bias involves the XOR

operator. Since XOR captures the essence that one feature or another feature is found in

the file, but not both, a check is made prior to construction to ensure the hypotheses do

not contain features generated from the same file. Other biases involve the spatial

operators. The spatial operators BEFORE and DISTANCE are only applied to

hypotheses derived from the same example file. This guarantees that the constructor will

be able to determine a distance and ordering for the features in the file. The final

133

operator bias is for the OR operator, which has no restrictions. The use of these biases

reduces the overall number of hypotheses generated through construction.

A variety of techniques can be used in the application of constructive operators

across the hypotheses. One technique would apply all the operators across two

hypotheses and then evaluate the results. Another technique would apply an operator

across all the hypotheses, evaluate the results from that operator, and if necessary, apply

the next operator in succession. A third technique would apply all the operators across all

hypotheses and then perform hypothesis evaluation. HEC utilizes the third technique.

This decision was based on the need to test this research's primary hypothesis that

constructive induction provides a suitable learning mechanism for the virus detector

system of a computer immune system. Each operator is applied to all the hypotheses to

see if construction improves the overall detection potential of the system. This technique

also tests the constructive operator hypothesis by providing information on whether the

spatial and logical operators can be used to construct effective hypotheses. Finally, since

constructive induction has not been used in previous virus detectors, no background

knowledge exists that can guide which operators will lead to the best detector.

5.3.1.4.3. Generation Grammar

A hypothesis can be created in several ways through the selection rules and

constructive operators. Information is stored in the generation method field of the

hypothesis that records the selection rule used to extract the features from the file and the

relationship between the features established by the constructive operators. Evaluation

134

of the hypothesis is accomplished by comparing the hypothesis to the examples and

scoring the hypothesis. During this comparison, the features are found using the

selection method and the relation between the features is compared to the generation

grammar to determine if the hypothesis classifies the example.

The generation method field is instantiated through the generation grammar. This

grammar is similar to prefix mathematical notation, where the selection rules are

analogous to operands and constructive operators are similar to mathematical operators.

The productions for the generation grammar are:

S-»R

S ^ OSS

R -» chunking I sliding_window | eo_sliding_window

O ■> and I or I xor | before I distance

By way of example, the generation method stored for a hypothesis created by applying

the OR operator to two features selected through chunking rule would be [or, chunking,

chunking]. The generation method is stored in a binary tree data structure inside the

method field of the hypothesis.

53.1.4.4. Process / Algorithm

During constructive induction, the various constructive operators are applied

across all the hypotheses. For each operator, two hypotheses are chosen from the

135

hypothesis list, and the labels and selection method are checked to ensure they match.

The new hypothesis is created by setting the label equal to the label of the original

hypotheses and the score is set to null. The algorithm for this process is shown in Figure

21.

The next steps are dependent on the type of operator being used. Construction

through logical operators is accomplished by ensuring that any biases applicable to the

operator are satisfied. Next, the method is constructed by placing the operator at the root

of the new expression, with the left and right methods from the original hypotheses.

Construction through spatial operators is accomplished by ensuring that the hypotheses

are from the same file. Following this step, the file from which the hypotheses were

selected is searched to determine the relative location of the features for BEFORE and the

number of bytes between the features for DISTANCE. This process is continued until

each constructive operator has been applied to the hypotheses. This method does not

exhaustively search for repeated features.

136

ConstructedList = []

HypoList = hypotheses to be used for construction Loop

Loop

Hypol = first hypothesis in HypoList

Tail = remainder of HypoList after Hypol

Loop
Hypo2 = first hypothesis from Tail such that

Hypo2.Label = Hypol.Label and selection rule for

Hypol and Hypo2 are the same

Apply constructive operators to Hypol and Hypo2, storing

new hypothesis in ConstructedList

End Loop when Tail = []

End Loop when HypoList = []

ConstructedList = Hypotheses created from applying constructive

operators to hypotheses in HypoList

Figure 21 -■ Algorithm for Constructing Hypotheses

5.3.1.4.5. Computational Complexity

Constructing hypotheses uses a doubly nested loop to select the hypotheses two at

a time in a combinatorial fashion. The complexity of this loop is based upon the number

of hypotheses in the HypoList, or n. The application of the constructive operator takes

constant time for logical operators and is based upon the size of the file, or/, for spatial

operators in order to perform the search for the features. Based upon this analysis, the

algorithm for constructing hypotheses takes 0(n f).

137

5.3.2. Hypothesis Evaluation

Hypothesis evaluation is responsible for determining a score of "goodness" for

each hypothesis. This score is used to determine if the hypothesis should remain in the

system for possible construction or incorporation into the knowledge base. During

hypothesis evaluation, each hypothesis is compared against the example set to determine

the number of examples that the hypothesis classified and whether these classifications

were correct.

5.3.2.1. Scoring

MERCURY classifies files as self or nonself based upon virus signatures learned

by HEC. HEC is responsible for learning signatures for self and nonself that are able to

accurately classify files and have a predictive capability. This capability determines

whether a previously unseen file is similar to existing self or nonself. In order to achieve

a globally maximum accuracy and predictive capability, HEC seeks to induce hypotheses

that are locally maximal. The hypothesis score is used to determine if the hypothesis is

locally maximal.

Classification is when the features of the hypothesis are found in the example and

this match of features satisfies the expression stored in the generation method field of the

hypothesis. Misclassification is a form of classification where the labels of the example

138

and the hypothesis are different. Correct classification is when the hypothesis classifies

the example and the labels of the hypothesis and the example are the same.

A variety of measures can determine the effectiveness of a hypothesis for

classifying files as self or nonself. Many existing constructive induction systems have

used information gain for this purpose. Information gain is a measure of how well an

attribute splits the examples into groups; i.e. the reduction of system entropy by the

hypothesis. Information gain is computed through the following set of equations, where

p is the number of examples classified in class P, n is the number of examples classified

in class N, and v is the total number of examples.

I(p,n) = -(-E-log2-?-)-(-?-\og2^-)
p + n p + n p + n p + n

E(A) = ±^^I(Pi,ni)
,=i P + n

gain(A) = I(p,n)-E(A)

I(p,n) captures the idea that the probability of any example belonging to class P is

p/(p+n) and the probability of any example belonging to class N is n/(p+n). E(A) is the

expected information requirement for examples that have a particular attribute, A. The

information gain is then the amount of entropy reduction ascribed to a particular attribute.

[Qui86]

In HEC, the hypothesis is labeled during generation. During evaluation, HEC

must determine how well the hypothesis detects examples with the same label. Using

information gain in HEC would result in assigning the same score to hypotheses that

classify many examples correctly and to hypotheses that classify many examples

incorrectly. This property of information gain is based upon the score's normal usage,

139

where the system assigns a label to the classifier after evaluation. This property is based

upon the log2 terms used in the calculation for I(p,n). Based upon this property,

information gain is not used in HEC. Instead, other measurement criteria are used to

evaluate hypotheses.

The hypothesis score used in HEC reflects three important measurement criteria

of effectiveness: power, purity, and complexity. Power indicates the capability of the

hypothesis to classify any given example. Purity reflects the ability of the system to be

correct when it classifies. Complexity is related to Occam's razor; simple hypotheses

should be preferred over those that are complex. Based upon these measurement criteria,

the measurements of Table 17 are possible. In order to illustrate how these measures are

calculated, an example is provided in Figure 23.

Table 17 ■■ Possible Measurements for Hypothesis Effectiveness

Measurement One

Power
This measurement calculates the strength of the hypothesis by rating the
percentage of classified examples over the entire set of examples. This
measure does not account for correctness.

Measurement Two

Purity

This measurement examines the group classified as belonging to a
specific concept; in order to calculate the percentage of examples
classified correctly over the total number of examples classified by that
hypothesis.

Measurement Three

Complexity

This measurement is based on Occman's Razor [Gun91], which states
"Pluralitas non est ponenda sine neccesitat," meaning entities should
not be multiplied unnecessarily. This measure is calculated by looking
at the depth of the tree stored in the method field of the hypothesis, with
a complexity of 0 for selection.

A desired measure is one that rewards a hypothesis for low complexity, high

power and high purity. This concept is depicted in Figure 22. Hypotheses that posses

140

this desired property are locally maximal and encourage the system to become globally

maximal.

[H,H,H]
o

■^^ \

iClLMAl)/ |

^/ \

[L,L,L] Cc mplexity j
 ' ^

4\
\ \

\ ■ ■ \ \ \ \
-■:■■'■: ■ ■■:■;■■.■'■:-M-'" ■■■-:.'\ ...

■■■■: N ■ ■
■ ■ ■■■■■■ \

■X

Figure 22 — Depiction of Optimal Scores

The score for each hypothesis is stored as a record with fields for complexity,

power and purity. These measurements require the evaluation process to determine the

following metrics for each hypothesis: R, the number of examples classified correctly; S,

the number of self examples; N, the number of nonself examples; C, the number of

examples classified; and D, the number of constructions.

Based on this information, the score can be calculated by:

r.
Power = ■

N + S

Purity = —

NumConstru ctions = D

141

Hypothesis Evaluation |

Classified

4 Positive +
3 Negative
7 Total Hypothesis

Example Space

6 Positive +
7 Negative
13 Total

Unclassified

2 Positive +
4 Negative
6 Total

Power:
Purity:
Complexity:

7 /13 = 0.538
4/7 = 0.571
2

Hypothesis
((00101000) OR (01010000)) AND ((00001111) XOR (11111110))

AND
2nd Level of Construction

OR XOR
1st Level of Construction

Z^^ ^^%
Sliding

Window
Sliding

Window
Sliding

Window
Sliding

Window
Selection

Figure 23 ~ Example of Calculated Scores

142

5.3.2.2. Coverage

Power, purity and number of constructions provide a local perspective on the

performance of an individual hypothesis. A global perspective is also needed to ensure

the hypothesis list, as a whole, can classify the example set. This perspective is

encapsulated by the concept of coverage. Coverage is derived by comparing the

hypotheses to the examples to determine the number of hypotheses that classify,

misclassify and fail to classify each example. Coverage shows whether the hypotheses

are able to classify the entire example set, or only a certain portion. This measure is

based on the percentage of examples classified by the set of hypotheses. Coverage is

calculated after evaluation in a separate procedure.

143

5.3.2.3. Process / Algorithm

R,S,N,C <- 0

HypoList = hypotheses to be evaluated

ExampleList = examples that hypotheses are evaluated against

Loop

Hypo = first hypothesis in HypoList

Loop

Example = first example in ExampleList

If Example.Label = Self

S <- S + 1

Else

N <- N + 1

End If

P <- Parse(Hypo, Example)

If P = Found

C <- C + 1

If Hypo.Label = Example.Label

R <- R + 1

End If

End If

End Loop when ExampleList = []

Hypo.Score = Score(Hypo)

End Loop when all hypotheses are evaluated

Figure 24 -- Algorithm for Hypothesis Evaluation

During the evaluation algorithm, depicted in Figure 24, each hypothesis is

compared to all examples to determine its score. The parse function is used to compare a

hypothesis from the list of hypotheses and an example chosen from the example list.

Parse is responsible for determining whether the features were found and the method was

satisfied. If the features were found and method was satisfied, the hypothesis classifies

the example. This classification is correct if the labels of the hypothesis and the example

match, otherwise this hypothesis misclassifies the example. Score is responsible for

144

performing the calculations for the hypothesis score and storing this information in the

hypothesis. The evaluation process stops when all the hypotheses have been compared

against all the examples.

5.3.2.4. Computational Complexity

Hypothesis evaluation is accomplished through a doubly nested loop. The first

loop traverses the hypothesis list, one at a time. This loop is executed n times, where n is

the number of hypotheses in the list. The second loop iterates through the list of

examples e times, where e is the number of examples. Therefore, evaluation has

computational complexity of O(en), or 0(n2) in the worst case.

5.3.3. Hypothesis Ordering

The hypothesis ordering step is performed before or after the evaluation step, with

the purpose of reducing the number of hypotheses needed for evaluation or construction,

respectively. HEC has the ability to order hypothesis after evaluation, increasing the

efficiency of the system. Bias or other heuristics can be used prior to evaluation to

reduce the number of hypotheses that need to undergo this computationally complex

operation. After evaluation, hypotheses that do not perform well can be removed in a

manner similar to genetic algorithms or beam search.

145

HEC orders the hypotheses after evaluation, with the purpose of removing poor

performers from the pool of hypotheses sent to construction. The decision to evaluate

before ordering is based on the research objectives of determining what constructive

induction components are viable in this domain. Ordering is used to improve the average

case performance of construction, which is an inherently combinatorial operation.

Ordering searches for hypotheses that are not dominated by other hypotheses. These

hypotheses have the highest score for power and purity. The following sections examine

the growth in the number of hypotheses without ordering, changes to the evaluation

process, and ordering the hypotheses to find the nondominated set.

5.3.3.1. Hypothesis Growth

HEC generates numerous hypotheses in order to find the set of hypotheses that

adequately classifies the examples. This subsection explores the growth of hypotheses

based upon the various generation methods. Using the selection rules, selection creates at

most

N/K + (N-K+l)+ (N- (2K-1))

which by reduction, is equivalent to

N/K+2N-3K+2

hypotheses from a file, where N is the number of bytes in the file and K is the number of

attributes in each feature.

146

Following selection, hypotheses are used for construction. Construction chooses two

hypotheses at a time, in a combinatorial fashion, and applies the five constructive

operators. This process can be examined in terms of the number of hypotheses sent to

construction, or x.

s„\

v2,
'5 2 5 ^ —x —X

2 2

2 2 2

= 5

,5 2 5 .,5 2 5
(-JC —x)(-x —x)
.2 2_^ 2_ = 5(i^4 _£V + »x2 _±x)=t±Lx* -^x* +^ -2-x .25

4
50 3 15
—x3+—
4 4

5
2

125
4

250 3 75 2 05
4 4 2

This equation does not account for the biases used in construction to limit the application

of constructive operators. This equation can be viewed more generally in terms of the

levels of construction, L; the number of constructive operators, Ops; and the number of

initial hypotheses, X as:

2L-1„21

0(Ops'-lx*)

This order of growth of the number of constructed hypotheses is valid for x > 4. By way

of example, Figure 25 shows how the number of hypotheses in the system increases with

each level of construction for a system like HEC that uses 16 attributes in a feature.

147

Construction Complexity caused by the Number of
Constructions

 Chunking

 Sliding Window

 EO Sliding Window

1 2 3

Number of Constructions

Figure 25 ~ Complexity caused by Number of Constructions

5.3.3.2. Nondominated Set

A variety of techniques could be used to reduce the number of hypotheses in the

system. More heuristics could be used to limit the number of hypotheses that are

constructed. The label of a hypothesis with a high power and low purity could be

switched from one concept to another. These hypotheses have an ability to classify many

examples, however incorrectly; switching the label would dramatically improve the

purity. Such a step is not needed since the corresponding hypothesis that has high power

and high purity exists elsewhere in the hypothesis list. Hypotheses could be randomly

chosen from the hypothesis list and used for construction. Such a stochastic process

would have the same average performance of not ordering and would not guarantee any

improvements.

148

EEC's ordering mechanism is based upon the nondominated set of hypotheses.

This set is found by placing the hypotheses into "bins", a two-dimensional array that

equally distributes the hypotheses based upon their power and purity score. A

hypothesis is assigned to a bin based upon a mapping that translates the power and purity

scores from the range [0.0 .. 1.0] into five bins with containing the ranges ([0.0 ..

0.20),(0.21 .. 0.40),(0.41.. 0.60),(0.61 .. 0.80),(0.81..1.0]). Five bins were chosen to

provide a coarse ordering, since a lack of existing empirical evidence impedes finer

tuning. The system was designed to use a varying number of bins. With this system of

bins, a hypothesis with a power score of 0.9 and a purity score of 1.0 would have the

index (5,5) into the two dimensional array of bins. A hypothesis with a power score of

0.5 and a purity score of 1.0 would be placed into bin (3,5). The index into the bins is

expressed in terms of the power index followed by the purity index, or (power, purity).

The bin (5,5) is considered the "optimal" bin in this system since this is the location of

the hypotheses with the highest power and purity scores. Figure 26 illustrates this system

of bins and the location of the optimal bin.

The nondominated set is the set of hypotheses with scores that are greater than the

hypotheses in the dominated set. In terms of the bins, the dominated set is the set of non-

empty bins where another non-empty bin has a higher power index and a higher purity

index. The one exception to this rule is that all filled bins in the column for the highest

purity scores are included in the nondominated set. Since HEC is designed to learn

classifiers for a concept, and purity measures the ability of the hypothesis to classify

correctly, hypotheses with a high purity score should remain in the system.

149

s-

o
PM

QO

V©

c*

■•/.: —7—
/ /

...../■■■■:'■■:/

-■:.:.;::/■ : /

/ /
/ /

/> / '2 / /-4

/ / / / Purity
Individual Bin

Hypothesis Structure
including purity and
power scores

Hypothesis Evaluation Method

Figure 26 - Hypothesis Evaluation Method Using Bins

150

5.3.3.3. Process / Algorithm

Index = indexes of previous ordering

HypoList = []

B = bins with evaluated hypotheses

PrevPur <- 0

For Pow = (5 .. 1)

If PrevPur > Index(Pow)

PrevPur <- 0

End If

OldPur <- Index(Pow)

For Pur <- (5 .. 1)

If (Pur < PrevPur) and (Pur < 5)

Exit loop

End If

If B(Pow,Pur).Count > 0

Append(HypoList, B(Pow,Pur).BinHypoList)

Index(Pow) <- Pur

If Pur < OldPur

PrevPur <- Pur

Exit Loop

End If

End If

End Loop

End Loop

Index = Specifies the bins that compromise the nondominated set

HypoList = Hypotheses in the nondominated set

Figure 27 -- Algorithm for Hypothesis Ordering

Figure 27 shows the algorithm used to order hypothesis stored in bins. The output

of this algorithm is a list of hypotheses from the nondominated set. Additionally, an

index is created that defines the location of the nondominated set in the bins. This index

can be used if the nondominated set of hypotheses is not sufficient to construct classifiers

151

of the examples. The index can be used to increase the membership of the nondominated

set, increasing the number of hypotheses available for subsequent inductive steps.

5.3.3.4. Computational Complexity

Searching through the bins for the members of the nondominated set is accomplished

through a doubly nested loop. Each loop iterates one time for every power row, or 5

times. The append operation can be accomplished in constant time through pointer

manipulation. The overall complexity of the ordering step can be generalized to

0(bpowbpur) where each b is the number of bins into which power and purity are divided.

5.3.4. Hypothesis Incorporation

Hypothesis incorporation is responsible for converting the hypotheses that

correctly classify the examples into a form for acceptance into the knowledge base. The

current version of MERCURY dose not fully implement this process. Future iterations of

MERCURY should investigated algorithms for reducing the number of hypotheses

needed to form detectors. Adding this incorporation capability will close the inductive

loop.

Several fields of a hypothesis would be needed by the virus scanner, including

label, generation method, and features. The hypothesis score could also be incorporated

152

into the knowledge base, to aid the virus scanner in determining the relative worth of a

classification.

When hypotheses are incorporated, they are sorted so that hypotheses that detect

nonself are at the beginning of the list. This ordering ensures nonself byte patterns of

files are detected before self byte patterns, improving the classification process.

Following this sorting operation, the relative fields of a hypothesis are written to a text

file, with one field written per line.

5.4. Knowledge Base Interface

The knowledge base is responsible for storing information about the detectors

used to classify files as self or nonself. This knowledge base is currently structured as a

flat text file consisting of the detectors for self and nonself. The nonself detectors are

included first to ensure that viruses are detected with few misclassifications as self. This

knowledge base can accept virus signatures from other files than HEC. Current virus

signatures are comparable to nonself hypotheses selected through the sliding window

selection rule. This ability ensures that existing virus detection knowledge is not lost

using a system like MERCURY.

The only components of MERCURY that can access the knowledge base are HEC

and the scanner. Future iterations of MERCURY will include interfaces for introducing

new detectors through vaccination. Controlled user manipulation of the knowledge base

is also an area of possible development, as well as virus updates received through the

Computer Health System.

153

5.5. Scanner

The third and final component of MERCURY is the virus scanner. This scanner

is responsible for determining the classification of a file based upon the self and nonself

detectors created by HEC. The following sections discuss the use of self and nonself

detectors to classify files on the system. In the current version of MERCURY, the

scanner is not fully implemented. Reading the detectors from the knowledge base and

determining the files to scan were not incorporated, while determining the classification

of a file was. Several of the components of HEC can be reused in the scanner.

5.5.1. Reading Detectors

The detectors created by HEC are stored in the knowledge base. As discussed

above, these detectors are stored in a flat file. Each detector consists of a label, feature,

and generation method. The scanner reads this information from the file and creates a list

of hypotheses based upon the hypothesis data structure from HEC.

5.5.2. Determining Files to Scan

Only certain files are susceptible to infection by viruses. This research is

concerned with detecting file infector viruses in executable files, as compared to viruses

that affect data files, for example macro viruses in the Microsoft Office product line.

154

Executable files are distinguished by the following file extensions: exe, com, sys, dll, bat,

vxd, cab and drv. The list of files to scan is generated by searching the directory structure

of the system for files with these extensions. This list is converted into the example list

data structure used in HEC. In order to provide a basis for comparison against the list of

detectors, each file is given the label of self.

5.5.3. Determining Classification of File

A file is classified by determining if any of the detectors can be found within it.

This process is carried out by using the test_example function of HEC's evaluator. This

function operates by comparing the list of examples to the list of hypotheses; in the

scanner, the files to scan are compared to the list of detectors. Each file is opened and

read, 16 bytes at a time, using the various selection methods. These bytes are compared

to the features from the detectors. A flag is raised if there is a match based upon the

detection scenarios below. The entire generation method and features of the detector

must match for the file to be considered classified.

5.5.3.1. Detecting Unknown Files

A file is considered unclassified if no detector was able to classify it. In the fully

implemented version of MERCURY, this file would be annotated as unclassified and sent

155

to the virus expert to determine if the file is infected. Once the expert classified the file,

HEC would learn a new detector for it.

5.5.3.2. Detecting Self Files

A file is classified as self if one or more self detectors are found in the file, and no

nonself detectors are found. As discussed in Chapter Two, when a virus infects a file, the

virus normally leaves large portions of the file intact. If the existence of any self

detectors, without regard to the existence of nonself detectors, were used as the decision

criteria, the system would be duped by "normal" viruses.

5.5.3.3. Detecting Nonself Files

A file is classified as nonself if any nonself detector is found. Once a file is

detected as nonself, the user is informed of a possible virus. Future versions of the

scanner will allow the user to remove the infection from the file, delete the file, or

exclude the file from future scanning. The system could send the file to a virus expert in

the Computer Health System, or if it was misclassified, send the file to HEC to learn a

self detector for this file.

156

5.5.3.4. Detecting Previously Unseen Infectors

Previously unseen infectors are detected through the failure to recognize the self

detectors and the predictive capability of the nonself detectors. When a virus infects a

file, it moves portions of the file to different locations. Such an action can violate the

conditions of the self detector. This violation may be caused by breaking the sequence of

bytes used as a feature or breaking the relationships between the features established by

the constructive operators. An infection may also be detected by a nonself detector that

has the predictive capability to recognize features of similar viruses.

It is possible for viruses to go undetected. If a self detector is found and no

nonself detectors are found, MERCURY could classify an infected file as self. The use

of self and nonself detectors should improve the ability of MERCURY to combat these

invaders by providing an extra layer of detectors the virus would need to elude. Future

iterations of MERCURY should employ heuristics from current antivirus programs to

supplement MERCURY'S ability to detect previously unseen invaders.

5.6. Development Process

MERCURY was developed using a risk driven software process model called the

spiral model. This process iterates through objectives, constraints, alternatives, risks, risk

resolution, planning and commitment [Boe88]. Each step of the process is preceded by

157

a risk analysis to determine if continuing the process will result in positive gains. The

development of HEC followed this process.

The first iteration of the development process explored the feasibility of the

algorithms used for construction. This iteration did not look at accessing files, but rather

developing and integrating the processes of selection, construction, and evaluation.

Through the use of Prolog, the algorithms were developed with respect to logic and

purpose, rather than implementation. Construction used bitwise binary operators that

manipulated the bits of the features through the AND, XOR, OR, and NOT operators.

This method of construction was deemed ineffective, since it could misclassify files

based upon the variety of byte combinations that could result in the same feature.

Development in Prolog was halted due to execution speed considerations and the memory

requirements of storing a large number of hypotheses. This iteration illustrates an

alternative method to construction, representation of hypotheses and evaluation. The

hypotheses were evaluated by converting the examples into a list of all possible

derivations of an example using selection and construction.

The next iteration of the spiral investigated different alternatives to the induction

algorithms with the intention of improving efficiency and classification. The current

constructive operators replaced the bitwise operators. The bitwise operators were

deemed ineffective based upon the lack of specificity in comparison to the original

features. Finally, the program was translated to Ada, in order to take advantage of the

structured nature of the algorithms and improved file access ability provided by this

language. Another iteration resulted in more efficient evaluation routines, introduction of

ordering, increased information hiding, lower coupling and greater cohesion.

158

5.7. Summary

This chapter highlighted the prototyped implementation of the proposed design of

MERCURY. The chapter provided a detailed description of the components and

processes within the prototyped version of MERCURY, including the prototyped

versions of its three main components: the constructive engine, the scanner, and the

knowledge base. The constructive induction, HEC, was decomposed into its four main

processes: hypothesis generation, evaluation, ordering and incorporation. Biases that

were incorporated into the learning process and the reasoning for their inclusion were

investigated. These biases provide tidbits of background knowledge that aid the learning

mechanism in determining the "best" classifier. Issues involving the knowledge base,

and its integration into future iterations of MERCURY were addressed. The

methodology used to scan for viruses was discussed, as well as possible solutions to

detection challenges future iterations of MERCURY will encounter. Chapter Six presents

the results of the tests run utilizing MERCURY. Chapter Seven draws conclusions from

these analyses, and provides areas for system and methodological optimization, and

future areas of research in these fields of study.

159

6. Analysis and Results

6.1. Introduction

Chapter Five provided a detailed description of the components and processes

within the current version of MERCURY, focusing attention on the constructive

induction engine named HEC. This chapter presents the results of running various testing

scenarios utilizing MERCURY, in order to determine the effectiveness of the

constructive induction approach applied to virus detection.

First, the eleven test cases are explained in terms of their creation and testing

purpose. The performance of MERCURY is analyzed in five dimensions: time, space,

power and purity, coverage and process optimization. Each of these dimensions are

described in their importance for rejecting or supporting the hypotheses stated in Chapter

One. The primary research hypothesis as related to MERCURY is that constructive

induction provides a suitable learning mechanism for the virus detector system of an

individual computer system. In support of this primary hypothesis, the virus feature

hypothesis conjectured byte patterns can be used as the basis of a constructive induction

based computer virus detector. Additionally, the constructive operator hypothesis stated

logical and spatial operators can be used for constructing new attributes for the computer

virus detector. Conclusions from these analyses are presented in Chapter Seven along

with future areas of research.

160

6.2. Test Cases

Testing of MERCURY was accomplished through analyzing the hypotheses

generated for all eleven test cases. These test cases were divided into two groupings:

laboratory and operational. The laboratory test cases were designed to test

MERCURY'S functionality under certain expected situations along controlled

dimensions. The operational test cases utilized segments of actual application programs

to test MERCURY'S functionality in simulated "real world" situations.

Each test case was composed of eight files labeled self and two files labeled

nonself. This composition was chosen to reflect the small number of files that may be

infected on a computer. Each file was 100 bytes in length, based upon the large time and

space growth needed for generating, evaluating and ordering hypotheses.

The laboratory test cases were designed to investigate MERCURY'S performance

in particular situations. The files that composed each test case do not reflect files that are

used in a computer; rather, these files reflect situations that might be encountered or

particular machine learning problems. Since these test cases were used to validate and

verify MERCURY, the analyses presented in the subsequent sections will focus on the

operational test cases. Table 18 provides an overview of the laboratory test cases.

161

Table 18 -- Test Cases 1 - 8

Number Structure Purpose 1

1 Self- Mil's
Nonself-All O's

Does detection work? j

2 Self- All l's
Nonself- Random characters

Does MERCURY detect repeated
patterns?

3 Se//- Random characters without y
Nonself- Random characters with y

Does MERCURY induce classifier
for infrequent patterns?

4 Self- Have equal number of l's and O's
Nonself- Random characters with unequal

number of l's and O's

Does MERCURY detect parity of
bytes?

5 Self- Contain pattern y same distance apart
Nonself- Contain pattern y varying distance

apart

Does MERCURY detect spatially
and logically?

6 Self- same as Nonself Does MERCURY'S evaluation
process work?

7 Self and nonself are complement of each other Can MERCURY induce detector
for absolute position?

8 Self- Randomly generated string
Nonself- Randomly generated string

Can MERCURY detect patterns in
random strings? 1

The operational test cases investigated MERCURY'S ability to induce detectors

for segments of application programs. The files in this test case were created by

extracting a 100 byte segment approximately 2,000 bytes offset from the beginning of the

file. This segment of bytes was chosen to increase the probability of detection based

upon patterns in the binary application code, rather than patterns in binary libraries

included in the beginning of many applications. Table 19 shows the structure and

purpose of each operational test case.

Each test run collected information on: the time needed for selection and

construction; the coverage of the examples by the hypotheses; and the label, generation

method, and score fields of the hypotheses.

162

Table 19 - Test Cases 9 -11

Number

10

11

Structure
Self- Randomly chosen programs
Nonself- Randomly chosen programs
Self- Programs copyrighted by companies other

than Microsoft
Nonself- Programs copyrighted by Microsoft
Self- Randomly chosen programs
Nonself- File infector viruses

Purpose
Does MERCURY detect patterns
in programs?
Does MERCURY detect patterns
in programs from different
companies?
Does MERCURY detect viral
patterns?

6.3. Time

The first dimension of MERCURY analyzed was the time the constructive

induction process utilized to generate, evaluate and order the hypotheses. Two time

parameters were considered important for each test case: the time needed for selective

induction and the time needed for constructive induction. The following subsections

analyze the time results for the laboratory and operational test cases. These results were

obtained by running each test on one type of computer and cross validating some of these

results on another type of computer. The first type of computer was an Intel Pentium

200MHz computer with 64MB of RAM running Windows 95. The second type of

computer was an Intel Pentium II 350MHz with 64MB of RAM running Windows 95.

The laboratory test cases illustrated the difference in time requirements for

selective and constructive induction. Selective induction was run on the first hardware

platform, and took an average of 1.5 minutes to complete while constructive induction

took an average of 1338.5 minutes to complete. These results were not cross validated

163

based upon the small expectations of occurrence in operation. The graphical depiction in

Figure 28, shows the disparity in time needed for selection and construction.

Hypotheses Generation Time

E 1000.00 mm
12 3 4 5 6 7 8

■ Construction

T es t Case

Figure 28 -■ Hypotheses Generation Time for Test Cases 1-8

Similar to the laboratory test cases, there was a significant difference in the

induction times between selection and construction for the operational test cases. Each

time result was cross validated to investigate the effect of hardware upon the performance

of MERCURY. Selective induction for these test cases took 5.4 and 2.8 minutes for each

testing platform respectively. Constructive induction took 4797.5 and 3531.9 minutes

respectively for each hardware platform. These results are graphically depicted in Figure

29.

164

Hypotheses Generation Time

10000.00

1000.00

100.00 •

2 io.(

1.00

^Selection (1)
■ Selection (2)
□ Construction (1)

D Construction (2)

10

Test Case

Figure 29 -- Hypotheses Generation Time for Test Cases 9-11

6.4. Space

The next performance dimension of MERCURY is the number of hypotheses that

were induced. The results of this section were based upon a frequency analysis of the

hypotheses that remained following hypothesis generation, evaluation and ordering.

Several aspects were important to the space performance of MERCURY. The

first consideration was the composition of hypotheses generated during selection. The

next consideration was the composition of hypotheses generated during construction by

each method. The third consideration was the composition of hypotheses generated

during construction by each operator. The final consideration was the total number of

hypotheses created by selective and constructive induction, combined.

The first aspect of space performance is the composition of hypotheses generated

by each selection rule in selective induction. Across all the laboratory test cases, 4% of

165

all hypotheses were generated by the chunking selection rule, 44% by the every other

byte sliding window selection rule, and 52% by the sliding window rule. Across all the

operational test cases, 4% of all hypotheses were generated by the chunking selection

rule, 43% by the every other byte sliding window selection rule, and 53% by the sliding

window rule. These percentages agreed with the space predictions in Chapter Five.

Additionally, these percentages were similar to the results of the laboratory test cases.

This similarity was a result of the algorithm used to generate hypotheses, rather than the

effect of data. These percentages agreed with the space predictions in Chapter Five.

Composition of Hypotheses
Generated by Selection

100%

75%

50%

25%

0%

D Sliding Window

■ EOSW

B Chunking

4 5

Test Case

Figure 30 -- Composition of Hypotheses Generated by Selection for Test Cases 1-8

The second important aspect of space performance is the composition of

constructed hypotheses. This aspect was useful for showing a change in the composition

of the hypothesis list when the selected hypotheses were used for construction. Across

all laboratory cases, 0.2% of all constructed hypotheses were based upon chunking

selection rule hypotheses, 40% were based upon every other byte sliding window

selection rule hypotheses, and 59% were based upon sliding window selection rule

hypotheses. Across all operational cases, 0.3% of all constructed hypotheses were based

166

upon chunking selection rule hypotheses, 39% were based upon every other byte sliding

window selection rule hypotheses, and 60% were based upon sliding window selection

rule hypotheses. The results between the laboratory and operational tests were essentially

equivalent. Again, these results showed the construction algorithm as the determinant for

the composition of hypotheses, rather than the data that was used. The results for the

laboratory test cases are depicted in Figure 31.

Composition of Hypotheses
Generated by Construction

75% ------

50% --_ — — -

:iH
12 3 4

Tesl

□ Sliding Window

■ EOSW

III ■ Chunking

TTTT
5 6 7 8

Case

Figure 31 - Composition of Hypotheses Generated by Construction for Test Cases 1-8

The third space performance aspect is the composition of hypotheses constructed

by the constructive operators. Figures 32 and 33 show this composition. These results

showed that the OR and XOR constructive operators constructed a majority of

hypotheses that remained in the system after hypotheses ordering. The results for these

operators reflected the effect of fewer biases that constricted the choice of hypotheses

used for construction.

167

Composition of Hypotheses Constructed

BAND

■ BEFORE

D DISTANCE

DOR

■ XOR

57%

Figure 32 ~ Operator Composition of Constructed Hypotheses for Test Cases 1-8

Composition of Hypotheses Constructed

5%

33%
■ AND

■ BEFORE

D DISTANCE

□ OR

■ XOR

52%

Figure 33 - Operator Composition of Constructed Hypotheses for Test Cases 9 -11

The final aspect of the space performance of MERCURY is the number of

hypotheses generated by selection and construction, combined. Based upon the

combinatorial process of constructing hypotheses, the number of constructed hypotheses

was much greater than the number of selected hypotheses. The total number of

hypotheses was dependent upon the examples. The range of selected hypotheses was

168

750-1,600 hypotheses, while the range of constructed hypotheses was 250,000 to 910,000

hypotheses as shown in Figures 34 and 35.

Number of Hypotheses Generated by Selection and
Construction

1000000

100000

I 10000
~ 1000

I 100
10

1

tmm
iiBEEEEE ill! E! SIS
12 3 4 5 6 7 8

Test Case

I Selection

l Construction

Figure 34 - Number of Hypotheses Generated for Test Cases 1-8

Number of Hypotheses Generated by Selection and
Construction

■ Selection

■ Construction

□ Selection

□ Construction

Figure 35 -- Number of Hypotheses Generated for Test Cases 9 ■ 11

169

6.5. Power and Purity

The next performance dimension of MERCURY is power and purity. As

discussed in Chapter Five, power measured the number of examples that the hypothesis

classified, either correctly or incorrectly, while purity gauged the correctness of the

classifications that the hypothesis made. These measurements provided a local view of

the performance of MERCURY. The following subsections explore the power and purity

of hypotheses in MERCURY from the laboratory and operational test cases. This

exploration looks at five aspects of power and purity: selection, construction, analysis of

selection methods, analysis of operators, and overall results. This section provides a

foundation for the process optimization section, which will explore the effects of the

different system parameters upon power and purity.

The power and purity scores were the weighted average of the raw power and

purity scores that were stored in the hypotheses, in relation to the number of hypotheses

with that score combination. These hypotheses were considered in the same hypothesis

class. This weighted average was used to account not only for the best performers, but

also for the amount of processing the system required to induce those hypotheses.

The power and purity scores were analyzed by self and nonself. This distinction

was necessary due to the composition of the test cases, which have eight self and two

nonself files. Without this distinction, nonself hypotheses with the optimal power score

of 20% and an optimal purity score of 100% would not be distinguished from suboptimal

self hypotheses with the same scores. The power and purity scores of each hypothesis

170

were weighted by the number of examples in the concept that the hypothesis should be

able to classify, allowing for direct comparison of the values. A consequence of this

weighting was that overclassification is indicated by a power score greater than 100%.

MERCURY should be able to induce hypotheses with a power score greater than 12.5%

for self and 50% for nonself. These scores indicate hypotheses that only detect one

example, reflecting a performance equivalent to chance.

6.5.1. Laboratory Test Cases

The first aspect of power and purity is the average power and purity scores for

selection. Based upon the laboratory test cases, the average power score for self was

66.5% and 86.9% for nonself, while the average purity score for self was 96.0% and

100.0% for nonself. These values indicated that a large number of the selected

hypotheses were good detectors. This inflated result was possibly due to the contrived

nature of the laboratory test cases. The average scores for the different selection rules are

illustrated in Figure 36 and 37. These graphs show that the selection rules appeared to

have no relation to the power, while the every other byte sliding window selection rule

appeared to be a poor performer for purity.

171

Average Selection Scores for Power

1.00

0.00 -\-

I Self
l Nonself

Chunking EOSW Sliding Window

Selection Method

Figure 36 ~ Average Selection Scores for Power for Test Cases 1-8

Average Selection Scores for Purity

IJOO

0.75

o 050 +-
CO

025

0X)0

■ Self

■ Nonself

Chunkhg EOSW SMiigW iidow

Selection Method

Figure 37 ~ Average Selection Scores for Purity for Test Cases 1 - 8

While the average power and purity scores show the overall state of the system,

the detectors utilized as signatures will most likely be the hypotheses with the maximal

power and purity scores. The maximal power score was 100% for both self and nonself,

while the maximal purity score was 97% for self and 100% for nonself. These results

were the maximums across all the test cases.

The second aspect of power and purity is the average power and purity scores for

construction. Based upon the laboratory test cases, the average power score for self was

172

60.8% and 149.6% for nonself, while the average purity score for self was 96.9% and

98.3% for nonself. These values decreased in relation to their counterparts for selection.

Test cases 5 and 6 were designed to reduce the performance of the constructive operators.

Test case 5 was designed to reduce the effectiveness of the logical operators, while

increasing the effectiveness of the spatial operators. Since the space performance

analysis showed that more hypotheses constructed with logical operators were kept in the

system, this test case artificially inflated overclassification. Test case 6 was designed to

eliminate the number of possible unique patterns between self and nonself. With no

unique patterns to distinguish, this test case forced all hypotheses to overclassify.

Statistical evidence of these conclusions is presented in the process optimization section

of this chapter.

The average scores for the different selection rules are illustrated in Figure 38 and

39. These graphs showed that constructed hypotheses, based upon the sliding window

selection rule, had the most overclassification, with a nonself average power of 184%.

Additionally, constructed hypotheses based upon the chunking selection rule and the

every other byte sliding window selection rule have similar power and purity scores.

173

Average Construction Scores for Power

0.00
Chunking EOSW Sliding Window

Construction Method

Figure 38 ■- Average Construction Scores for Power for Test Case 1-8

Average Construction Scores for Purity

I Self

INonseH

Churitehg EOSW SMiagW iidow

Construction Method

Figure 39 - Average Construction Scores for Purity for Test Case 1 - 8

Another aspect of the power and purity performance of construction is the choice

of constructive operators. The average performance of the constructive operators is

shown in Figures 40 and 41. Figure 40 fails to show the full extent of the

overclassification caused by the AND operator, which had an average power of 273%.

174

Average Operator Scores for Power

1.00

0.00

aSelf

■ Nonself

AND OR XOR DISTANCE BEFORE
Operator

Figure 40 - Average Operator Scores for Power for Test Cases 1-8

Average Operator Scores for Purity

1.00

0.75

0.25

0.00

i! ■ > ■: 11 ■;
AND OR XOR DISTANCE BEFORE

Operator

Figure 41 - Average Operator Scores for Purity for Test Cases 1-8

175

•c z
3

c

u o
s z
o

a

ÖS 84 ÖS
o o o
O O Q
o o o

83 83 o-
o o S
» a 2

83 83 84
o o o
odd
in m m

sä * a«
in m »n
ts r4 *>i

g3 83 Ö?
o o o
odd
o o o a z s = =

83 ts 83
o o o

si

«a
00

PS
[*:

«a

V»

1^ 8
■a O »
UWB

t/1 t— O VO s*
Os ON

«W fS 83 g3
sn o o o >ä

M S o d d Cs* o o o *
£

&

a # is £ ? o i«
cc o o 2 » 8

~ Ü
CM S3 Ö? Ufa #

r? g o o o «
u
a
B.

o o o
z o o o

u
en

«M

50

o
d o

#1
«8

«a

»—i ©\

0) * 83 83
<U g en vo en
* vo t- VO
o z oo 00 00

M
U Si * 83
> o m os 1L* < to en os

so

K
sa

«0

$ £
ci q sb

8 2 «» o S3

£ 83 8?
o o SB
oda'

"" 00 00 00

8« B« #
O O S3
do«;
m m V)

83 83 83
m in in
o) ri <vj

* e? e?
O O S3

§' 2 «> o SB

«Sä g? ^
O O SB
oos'
O O SB

83 8« 8«
O O S3

2 «s O S3 8

83 83 {£
O © S3
in in in
tS CN «N|

83 8« g?
O O SB
OOtj
O O SB

83 83 83
"1 —. ■»
Er !C •< OS Os ON

8« 8« 8?
os ""! W)
r- ■* ^f
OO C- 00

84 84 {£
—• CM <V)
d -J SB'
vo so so

83 83 g3
O O S3
d d 55 o o 5

* 8? £$
O O SB
d d ca"
00 00 00

8? 8? #
O O SB
d d si
>r> m V)

84 gä ^
u-i in in
ri ri ri

84 84 84
O O SB
odsj
O O SB

84 84 8?
O O SB
d d SB'
O O SB

84 8? 8*
O O SB

8'8g

84 84 84
O O SB
in m' in
CN tN »sj

84 84 8«
O O SB
odsi
O O S3

84 04 J^
oo in so
so ■* so
OS OS OS

84 84 #
—i VO Os
d os so
os r-- oo

8? 84 B?
^ "**. ^
(N CS (SJ
VO VO V£>

1^1
g = ^

84 84 E^
O O S3
d d SB'
oo oo 00

84 84 ^
O O SB
ddsj
m m in

84 84 #
mm in
ri (N r4

84 84 8?
O O S3
d d SB'
O O S3

8? 8? 8?
O O S3
§d S3"

O S3

84 84 8?
O O S3
d d si
o 5 S
m — in

84 84 84
o q SB
m' in in
(S SS «sj

got?
ON X 0\

m ON ©
r^ ^ sd
ON ON 0\

g 83 8?

84 84 gä
»»IK
Os O >'
in vo so

C
hu

nk
in

g
C

hu
nk

in
g

ng
 T

ot
al

E
O

SW

E
O

SW

T
ot

al

Sl
id

in
g

Sl
id

in
g

T
ot

al

pe
al

at

ia
l

un
ki

1-afe ^SU

L
og

i
Sp

at
i

£
0
5

L
og

i
Sp

at
i

si
m

3&$

ao

«a
«a

■
«o'

»»5
00
Os

s
e a

■B

m
S

*9 ^ ^ ,g
O P <= S
P88S* oo S ^ 66 a s

84 84 84 j£
O O O SB
d d d SB'
oo oo oo 00

8? 8? 8« 8*
O O O S3
ö ö ö vi
in in in in

in in in in
c*i c*i ei <NJ

83 83 84 84
o o q SB
ö ö ö si
O O O S3

83 83 83 8?
O O O SB
ö ö ö si
O O O S3

84 84 84 #
O O O SB
ö ö ö si
O O O SB
in —< — in

83 83 83 #
o o m SB

83 S3 83
O O SB
d d si
o o S3

83 83 g?
O O S3
d d SB'
oo oo 00

84 84 £
O O S3
d d SB'
in in in

83 83 83
m m in
ri ri ri

83 83 83
O O S3

2 S «> O O «3

83 83 83
O O S3
d d SB'
o o S

83 83 g?
O O S3
OOsi
O O SB

83 83 83
O O S3

3

1

Si

'S
00

s»
00

m >s^

!"0

ifsi

s»

- Si

o x >3 D n «■

!

i
t y

m m tN "n u-i »n "> if,
M N - <S
»-H ^" i-H ">< »—I l-H ~H

iai'j

^ 83 83
oo <=. °. «

83
o

83
o

83
S3

■* o o S o o K o o o
o ss 00

"■ " ">< OS

^ 83 83 83 V#
VO 00 00 "H r~ i— (N Os
h in * ts ■* ■* ■*' \o
ON ON ON Os OS Os

.3 if
S3 IS

^ 83 83
~ f- Os

83 83 83

£2 en H JO 00 Os g? •a t^ t- ÄH ?£ csi -i.
VO
oo

83 83 83 ^ # 83 83 ^ l\
Tt t- ■* K m <N »N uo
O — Os »—i <—i «S
in t~- en NO VO SO m

U

H
u

«2

ä

I
E s

5

!

uoipaps uoipnjjsuo3 S3JO}BJ3do

176

An overall analysis of the results for the laboratory test case is provided in Table

20. These results showed that the average power score increased from selection to

construction, 70.6% to 78.6%, respectively. The average power score was based upon a

proportion of the averages for self and nonself power and the number of self and nonself

examples. This increase indicated that the constructive induction process appeared to

help learn detectors for files. However, the average purity score decreased for both self

and nonself examples. A comparison of maximum power for selection and construction

provided little information since overclassification resulted in power scores greater than

100%. Looking at the maximum values when overclassification exists falsely inflated the

worth of the overclassified parameter.

6.5.2. Operational Test Cases

The operational test cases reflected a "real world" view of the performance of

MERCURY. The individual test cases were not designed to reduce the performance of

one aspect of the system in order to test another aspect, as occurred with the laboratory

test cases. This section will analyze these test cases with respect to the power and purity

scores from selection, construction, construction with respect to each selection method,

construction with respect to each operator. It also provides an overall view of the test

cases.

177

The first aspect of the power and purity performance is the average power and

purity for selection. All hypotheses induced for the operational test cases had a purity of

100% for both self and nonself. Since purity was not a varying parameter in the

operational test cases, it will not be discussed further in this section.

During the operational test cases, MERCURY was able to generate detectors with

an average power score of 12.7% for self and 50% for nonself. These power scores were

equivalent to the chance scores of 12.5% for self and 50% for nonself. The selection

rules did not vary the average power scores, as can be seen in Figure 42. The maximum

power for self hypotheses was 37.5% and 50% for nonself detectors.

Average Selection Scores for Power

1.00

0.75

o 050
w

025

0J30 , BfB , nil

I SeH

I Nonself

ChurJchg EOSW

Selection Method

SüäiagW iidow

Figure 42 ~ Average Selection Scores for Power for Test Cases 9-11

The next aspect of the power and purity performance of the operational test cases

is the average power for construction, which were 22.6% for self and 66.9% for nonself.

These scores were not equivalent to the chance scores of 12.5% for self and 50% for

nonself. Additionally, the maximum power score was 62.5% for self and 100% for

nonself. The average and maximum power scores both increased from selection to

construction.

178

Average Construction Scores for Power

BSelf

■ Nonself

Chunking EOSW Sliding Window

Construction Method

Figure 43 -- Average Construction Scores for Power for Test Cases 9-11

The above figure shows that the power scores for constructed hypotheses vary

slightly with the selection rule, upon which the hypothesis is based. Table 21 shows that

the best performing hypotheses were constructed using the sliding window selection rule;

their maximum power was 62.5% for self and 100% for nonself. The process

optimization section will continue to explore the relationship between power and the

various selection rules.

The next aspect of the power performance of the operational test cases is the

effect of the constructive operators. Figure 44 portrays the relationship between the

constructive operators and power. The OR and XOR operators have different power

scores than the other operators. OR had an average power score of 23.9% for self and

75.2% for nonself, while XOR had an average power score of 25.4% for self and 100%

for nonself. The maximum power scores for both OR and XOR were 62.5% for self and

100% for nonself. These scores were also the maximum across all the operators.

179

Average Operator Scores for Power

H Self

■ Nonself

AND OR XOR DISTANCE BEFORE

Operator

Figure 44 -- Average Operator Scores for Power for Test Cases 9 -11

The overall power and purity performance can be found in Table 21. As stated

above, the purity of all the hypotheses was 100%. The average power across the self and

nonself concepts increased from 20.2% for selection to 31.5% for construction. This

increase shows that MERCURY was able to create better hypotheses. This finding is

supported by the increase in maximum power for self from 37.5% to 62.5% and for

nonself from 50% to 100%.

180

* z
o ft.
c

1 sa ^ 73

c z

S ^
1/1

v e

«! CO

5 o

■<i! to

8« S3 Bä
o o o
odd
o o o Z S 5 S <a

83 85 B<
o o o
Ö Ö Ö
o o o

■S! >S 85 S3 S3
o o o
Ö Ö Ö
in in in

^ 8« 8«
in in >n
es es es

gs a« *
o o o
odd
o o o

8« 88 BS
o o o
odd
o o o

is a« ss
o o o
odd
in in in

S3 83 85
mom

S3 sa s«
o o o
odd
o o o

Si S3 S3
o o o
odd
o o o

S3 S3 S3
o o o
odd
m m m

S3 88 *
in ^q CT\
ei H ri

u>
00

j* er
181
UWO)

«5
SB

z s s s «

Ill

S3

is*
("5

H »«I

El

3

s «
■« u
.5»

CO

S3 88 S3
O O S3
d d si
o o §

S3 88 63
O O s>
d d si
o o S

8ä 88 £
o o SJ
d d si
m m in

S3 8? 8?
m m in
es es es'

88 88 g?
o o ©
d d si
o o ss

88 88 6?
O O 51
d d ss
o o S

P. o s»

2 ° 2

88 88 #
o m «5
in es vi
es —i es

88 88 8?
O O «5
OOsi
O O SS

88 88 8?
o o ©
d d si
o o ss

S3 83 S3
in q o
r- d ss\
r- m ^

88 88 8?
t> m \o
en es es
es — es

•s a

u O
73 73

•a 61 ea

J o.
C/3

88 88 #
O O SB
d d si
o o S

88 88 8?
O O Ss
d d ss
o o S

88 88 8? o o Ss
d d si
m m in

88 88 8?
m m in
es cs es

88 88 8?
O O S3
d d cj
o o S

88 88 88
O O SB
d do'
o o ss

88 88 88
NOM
m d in
r-- m K

83 83 #
m m in
t~ ci (s
en « en

88 88 8?
o O SS
d d cj
o o S

88 88 88
O O SB
d dsi
O O SB

88 88 88
es O SB
mid K

88 88 88
m m s>\
en es ^$
es — es

O O S3
d dsi
O O SB

8? 8? 8?
O O S3
docj
O O S3
— "-1 «s

88 88 8?
O O S3
d d ss
m m in

88 88 8?
m m in
es es es-

88 88 88
O O S3
d d S3"
O O S3

88 88 8?
O O S3
d d s»-

O O S3

g tä*Ö8
O 0 SB

2 ° 2

83 63 g3
m m in
es r~ es

88 88 88
O O SB
d d SB'
O O S3

85 8? 88
O O S3
d d SB'
O O S3

88 88 88
M q 8s
m d ^3
r- m ic

88 88 8?
—i in oo
■» es es
es — es

SB
=3

e£
«3
«5
«3

«a

ss

85 8? 85 88
O O O SS
d d d cj
o o o S3

88 88 88 8?
O O O S3
odd cj
o o o §

88 88 fi 88 8?

IS
88 88 88 8?
m m m in
es es es j>$

88 88 88 8?
o O O SS
d d d ss
o o o ss

85 # 8? 8?
O O O S3
d d d SB'
O O O SB

88 88 85
O O S3

<n S 2 2
o
d

83 83 88 85
in in in in
t> pj «N r4
n K3 ic lo

«
K<

:a
l

E
O

SW

al
E

O
S

W

W
 T

ot
al

ca
l S

lid
in

g
al

 S
lid

in
g

ng
 T

ot
al

 8

1

L
og

i
Sp

at
i

E
O

S

L
og

i
Sp

an

Sl
id

i

a

85 83 83
o o SB

88g

83 83 83
o o S3
odei
O O SB

85 83 83
o o ss
d d si
m m in

85 88 83
m m in
tN ri <sj

83 85 85
O O S3

8'8'g

83 85 83
o o ss
d d si
o o S3

83 85 83
o o ss
d d si
m m in

83 83 83
m m in
<""■ C t< en en *n

£

§

Z « O If S3
^ o >< 3 a

cs
«3
C3

88 88
o o

88
O S3

85
o

88
o

88
s> C3

o o o o
O
o

si
s>

o
o

o
o 1

»1 =3
1*4

85 83
o o

83
o

85
o

S3
o

83
s> S3

o o o o
o
o 1 8 o

o si
Ss

S3'
S3

<£ 85
O eM

83
o S3 83

o
85
o

63
s>

o m m r- o S o
m

o
m si

<n

85 85
m c\

03 83
0\

83
m

83
in

85
•n

es en
—i ts

m
ts e»? es es es

1

uoipaps noipnjjsno3 sjojBjadQ

181

6.6. Coverage

The fourth dimension of the performance of MERCURY is coverage. This

measurement provided information about the global behavior of MERCURY. As defined

in Chapter Five, coverage is the number of hypotheses that classify, misclassify and fail

to classify each example. Coverage can be used to determine the classification rate, or

the percent of examples that are classified, misclassified or not classified by the

hypotheses. The following subsections provide a discussion of the classification rate of

MERCURY.

The power and purity results for the laboratory test cases showed that some

hypotheses overclassified. The coverage results in Figure 45 showed that for test cases 5

and 6 the nonself files were misclassified. In test case 5, hypotheses were induced that

either classified or failed to classify the self examples. In addition, a large number of

hypotheses were induced that misclassified the nonself files, with a smaller number either

failing to classify or correctly classifying these files. These results indicated that

hypotheses were induced having the ability to classify the nonself files, while not

misclassifying the self files. While a definitive conclusion can not be reached without

determining which hypothesis classified which examples, it is probable that a smaller

subset of the hypothesis list from test case 5 could have classified each example in the

training set. However, no subset could be derived for test case 6. With the files the same

for both self and nonself, finding a detector with the ability to distinguish the two

182

concepts is impossible. The results concurred with this analysis, since no hypotheses

were able to classify the nonself examples correctly.

Coverage by Selection and Construction

0)
B)
n
0)
>
o
u

100%

80%

60%

40%

20%

0%

□ Misclassified
■ Unclassified
13 Classified

3 4 5 6

Test Case

Figure 45 ~ Coverage for Test Cases 1-8

The coverage results for the operational test cases are graphed with respect to

classification in Figure 46. These results show that all hypotheses had 100% purity, each

example was classified and there were no misclassifications.

Coverage by Selection and Construction

en
(0
im
Ol
>
o u

100%

80%

60%

40%

20%

0%

D Misclassified
■ Unclassified
B Classified

10

Test Case

11

Figure 46 ~ Coverage for Test Cases 9 -11

183

6.7. Process Optimization Through Response Surface Methodology Techniques

Response surface methodology (RSM) is a collection of statistical and

mathematical techniques useful for developing, improving, and optimizing processes

[MyM95]. This technique is useful in applications where several input variables

potentially influence some performance measure or quality characteristic of the product

or process. The input variables are sometimes called independent variables, and are

subject to the control of the engineer or scientist, at least for the purposes of the

experiment. The performance measure or quality characteristic is called the response.

The general objective of the RSM process is to find values for the input variables that

yield a desired, often "optimal" response.

Since the form of the true response function/is unknown, it must be

approximated. The successful use of RSM is critically dependent upon the

experimenter's ability to develop a suitable approximation for/. A response surface is

the geometric representation of a response function. [Hil98]

The ability to observe the response of a system is often skewed by variability and

uncertainty. If repeated observations of the system are made at the same set of input

conditions, the responses observed may vary from observation to observation because of:

measurement errors, variability in the "experimental material", or the influence of other

variables not accounted for.

After observing the response at different sets of values of the input variables, an

attempt is made to use this information to develop a parsimonious approximation to the

response function referred to as the empirical model. RSM comprises a set of statistical

184

and mathematical techniques for empirical model building and exploitation that

encompasses [Hil98]:

1. Designing a series of experiments that will yield adequate and reliable

measurements of the response(s) of interest in a region of interest.

2. Analyzing the results of those experiments to determine an empirical

model that best fits the data collected

3. Searching for the optimal settings of the input variables that produce a

desired response

These techniques include:

1. Designed Experiments - an experimental process of inducing

purposeful changes in the input variables in order to observe and

model the changes in the response

2. Regression Analysis - statistical techniques used to model the response

as a linear combination of various forms of the input variables and

their interactions

3. Steepest Ascent - a gradient search technique that helps us to "scale

the heights" of the response surface

This research is targeted at demonstrting that constructive induction provides a

suitable learning mechanism for the virus detector system of an individual computer

system. Based on the empirical analysis of MERCURY'S results, presented above, the

185

hypothesis that constructive induction provides a suitable learning mechanism for the

virus detector system of an individual computer system can not be accepted or rejected.

The RSM methodology can be applied to the constructive induction approach to

the virus detection domain. The output from the testing of MERCURY can be

manipulated using statistical and mathematical techniques, in order to possibly improve

and optimize the process of virus detection using the constructive induction approach.

The input variables influencing the performance and quality of the virus detection are

numerous. These independent variables are listed in the following table; each is defined

by its name, type, and range.

Table 22 - RSM input variables

Input Variable Type Range
Test Case Number Nominal 1-11
Number of Hypotheses Generated Continuous 1 -1,000,000

Method used for Hypothesis
Generation

Nominal Chunking, EOSW, Sliding
Window

Operator used for Hypothesis
Generation

Nominal NONE, AND, OR, XOR,
BEFORE, DISTANCE

Hypothesis Label Nominal Self or Nonself

Induction Type Nominal Selective or Constructive

Each of these input variables could potentially contribute, in varying degrees, to

the quality of the response, which in our case is the "goodness" of constructive induction

applied to the virus detection domain. Specifically, this "goodness" is measured through

two scores of power and purity for each class of hypotheses. A class of hypotheses are

those generated by the same combination of constructive operators and selection rule, and

yielding the same scores for power and purity. Each hypothesis within a class might

represent a different group of features; however, this research focused upon the

186

generation method. Therefore, these two scores will be utilized as the response variables

intended for optimization. The response variables are defined in the following table, by

name, type, and range. The general objective of this RSM process is to find values for

the input variables that yield an "optimal" response for power and purity.

Table 23 -- RSM response variables

Response Variable
Power
Purity

Tyjie.
Continuous
Continuous

Range
0.0-1.0
0.0-1.0

The data produced by MERCURY contains a certain amount of variance, some of

which can be explained. The output generated by MERCURY exhibits a high degree of

variability between test cases and a low degree of variability within test cases. The

variability between test cases is most evident between test cases 1 through 8 and between

the "group" 1 through 8 and the "group" 9 through 11. The heterogeneity between test

cases was primarily driven by the objectives of each test case. Test cases 1 through 8

represent contrived, laboratory test cases, whereas 9 through 11 represent the operational

test cases, with byte patterns extracted from "real-world" non-infected files and "real-

world" virus files. The low variability within test cases could be explained by the small

size of individual test cases, the small size of extracted byte patterns, and the method of

contriving the test cases in order to test the functionality of certain generation methods

and constructive operators.

MERCURY was tested on 11 test cases, using different sets of values of the input

variables. However, the process optimization techniques will only be applied to the

operational test cases. The laboratory test cases were only used to verify and validate

187

MERCURY, which renders them unsuitable for optimization. The primary RSM

technique used in this dimension of analyses is regression analysis, which attempts to

model the response as a linear combination of various forms of the input variables and

their interactions. These analyses will examine the output for the operational test cases to

determine the existence of a parsimonious, empirical model. The RSM techniques will

also determine which input variables have the greatest effect on the responses of power

and purity, and determine the optimal "settings" of the input variables which produced

the optimal responses.

The following sections present the findings of the RSM study. All analyses were

obtained using the JMP Statistical Analysis Program. The first section describes the

distribution characteristics of the data set, and makes provisions for their analyses.

6.7.1. Analyzing the Distribution of Data

A normality test was conducted on the test cases, using the Shapiro Wilk Test for

Normality. These tests concluded that the data set was not normally distributed. If the p-

value is less than 0.05 or some other alpha, conclusions of a non-normal distribution can

be made. The following table, showing the results of the normality test, which supports

the conclusion of non-normality. The purity scores were all 1.0 for the operational test

cases; therefore, they were not tested or analyzed.

188

Table 24 ■- Test for Normality

Shapiro-Wilk W Test - Test for Normality

Test Case Group

9-11

Response
Power
Purity

W
0.785653

p-value
0.0000

Based on these results, nonparametric tests were used for this data. These types

of tests do not depend upon a normal distribution of data; nor do they depend on the

assumption that the population from which the sample was taken is normal [A1190]. The

assumptions for nonparametric tests are that the samples are independent from each

other, their variances are constant, and their residuals are normally distributed.

Nonparametric methods are often computationally simpler and easier to understand;

however, they also have some disadvantages. One disadvantage is that they tend to be

less sensitive than their parametric counterparts and thus require stronger evidence to

reject a null hypothesis [A1190].

The first assumption of independence is satisfied, based upon the deterministic

qualities of MERCURY. The second assumption of constant variance is partially

satisfied. Based on the results presented in the following three tables, variance across

methods and labels is constant, though variance across operators is not constant. These

conclusions are based on at least one test for each group, where the probabilities greater

than 0.05 showed constant variance, and probabilities less than 0.05 showed non-constant

variance.

189

Table 25 ~ Tests that the Variances are Equal across Operators

Test F Ratio DFNum DFDen Prob>F
0'Brien[.51 8.5902 5 162 <.0001
Brown-Forsythe 3.2398 5 162 0.0081
Levene 6.0585 5 162 <.0001
Bartlett 6.1502 5 ? <.0001

Table 26 ~ Tests that the Variances are Equal across Methods

Test F Ratio DFNum DFDen Prob>F
O'Brienr.51 0.9712 2 165 0.3808
Brown-Forsythe 1.4102 2 165 0.2470
Levene 1,7973 2 165 0.1690
Bartlett 1.2445 2 ? 0.2881

Table 27 ~ Tests that the Variances are Equal across Labels

Test F Ratio DFNum DFDen Prob>F
O'Brienr.51 38.6499 1 166 <.0001
Brown-Forsythe 3.7111 1 166 0.0558
Levene 63.1145 1 166 <.0001
Bartlett 30.1749 1 ? <.0001

The third assumption of normally distributed residuals is not satisfied. The

following figure shows the distribution of residuals. Based on the results of the Shapiro

Wilk Test for Normality, with a p-value of <. 0001, these tests concluded that the

residuals were not normally distributed. Although not all three assumptions for

nonparametric testing were fully satisfied, the analyses will use this form of testing.

Since the data from the test cases are nominally scaled, the applicability of variance and

normality could be lessened.

190

Figure 47 -- Distribution of Residuals

6.7.2. Analyses on Test Cases 9 through 11

6.7.2.1. Preliminary Analyses

The analysis on the operational test cases used the input variables Test Case

Number, Number of Hypotheses Generated, Method used for Hypothesis Generation,

Operator used for Hypothesis Generation, and Hypothesis Label as factors affecting the

responses of power. There are no tests for purity, since all the hypotheses had a score of

1.0 across all test cases.

For each of these variables, a pictorial representation of the data is presented,

showing the range, mean, and distribution of the power scores. The tables following each

figure show the results of the Wilcoxon / Kruskal-Wallis Test, a nonparametric tool that

191

tests whether group medians are the same across all groups. The usual analysis of

variance assumption of normality is not made. "Prob>ChiSQ" is the probability of

obtaining by chance alone a chi-square value larger than the one calculated if, in reality,

the distributions across factor levels are centered at the same location [A1190]. Observed

probabilities of 0.05 or less are often considered as evidence that the distributions across

input variable levels are not centered at the same location. Assumptions of the Kruskal-

Wallis Test are that the populations have identical shape and variation, and that they are

not normally distributed.

192

1.1 -

1.0 -

0.9-

0.8-

0.7-

fc 0.6-
3
S. 0.5-
S?

0.4-

0.3-

^
«Cs. \ ^

^

^ x><.
■

"=C^ "-""

0.2-

0.1 -
9 10 11

Test Case

Figure 48 -- Pictorial View of Power across Test Cases

Table 28 - Wilcoxon/Kruskal-Wallis for Differences in Power across Test Cases

Wilcoxon / Kruskal-Wallis Tests (Rank Sums)

Level Count Score Sum Score Mean (Mean-Mean0)/Std0

9 51 4307 84.4510 -0.007

10 55 4580.5 83.2818 -0.232

11 62 5308.5 85.6210 0.234

1-way Test, Chi-Square Approximation

ChiSquare DF Prob>ChiSq

0.0721 2 0.9646

193

Figure 49 - Pictorial View of Power across Operators

Table 29 - Wilcoxon/Kruskal-Wallis for Differences in Power across Operators

Wilcoxon / Kruskal-Wallis Tests (Rank Sums)

Level Count Score Sum Score Mean (Mean-Mean0)/Std0

AND 24 1762 73.4167 -1.244

BEFORE 22 1628 74.0000 -1.120

DISTANCE 21 1561 74.3333 -1.056

NONE 24 1762 73.4167 -1.244

OR 45 4346 96.5778 2.010

XOR 32 3137 98.0313 1.805

1-way Test, Chi-Square Approximation

ChiSquare DF Prob>ChiSq
10.3443 5 0.0660

194

1.1 -

1.0- -»- —

0.9-

0.8-

^ 0.7-
0)

o 0.6-
0.

5« 0.5-

/M\ X \ _-- ,—>

0.3-

0.2-
■

^ ' >^ -

m

0.1 - i i
CHUNKING EOSW SLIDING WINDOW

Method

Figure 50 — Pictorial View of Power across Methods

Table 30 - Wilcoxon/Kruskal-Wallis for Differences in Power across Methods

Wilcoxon / Kruskal-Wallis Tests (Rank Sums)

Level Count Score Sum Score Mean (Mean-Mean0)/Std0

CHUNKING 42 3586.5 85.3929 0.140

EOSW 52 4267.5 82.0673 -0.447

SLIDING_WINDOW 74 6342 85.7027 0.292

1-way Test, Chi-Square Approximation

ChiSquare DF Prob>ChiSq

0.2023 2 0.9038

195

1.1 -

1.0-

0.9-

0.8-

0.7-

i 0.6-
o
^ 0.5-
6^

■

■

0.4-

0.3-

0.2-

0.1 - I
NONSELF

Label

SELF

Figure 51 ■- Pictorial View of Power across Labels

Table 31 - Wilcoxon/Kruskal-Wallis for Differences in Power across Labels

Wilcoxon / Kruskal-Wallis Tests (Rank Sums)

Level Count Score Sum Score Mean (Mean-Mean0)/Std0

NONSELF 63 8406 133.429 10.435

SELF 105 5790 55.143 -10.435

1-way Test, Chi-Square Approximation

ChiSquare DF Prob>ChiSq
108.9314 1 <.0001

196

Based on the results from the figures and tables above, the following conclusions

can be drawn. The power scores of each test case are not significantly different from

each other, shown by a probability score of 0.9646. These are the expected results, since

the examples in these test cases were generated from "real world" files.

The power scores generated by the different operators are statistically different,

proven by the probability value of 0.0660. In order to accept the conclusion of

difference, an alpha of 0.10 is required, as opposed to 0.05, which provides less

confidence in these results. This test is significant because it proves that at least one

operator or group of operators provided a better measure of power than the other

operators. By observation, it could be concluded that OR and XOR are better operators,

based on their high power scores of 96.5778 and 98.0313, respectively. These scores

were obtained from Table 29. By performing additional tests, it can be shown which

operator is different. Isolating the four variables believed to be similar, AND, NONE,

BEFORE and DISTANCE, the test below confirms they are statistically the same.

Table 32 - Wilcoxon/Kruskal-Wallis for Differences in Power across FOUR OPERATORS

Wilcoxon / Kruskal-Wallis Tests (Rank Sums)

Level Count Score Sum Score Mean (Mean-Mean0)/Std0

AND OP 24 1101.5 45.8958 -0.019

BEFORE 22 1013.5 46.0682 0.010

DISTANCE 21 969.5 46.1667 0.030

NONE 24 1101.5 45.8958 -0.019

1-way Test, Chi-Square Approximation

ChiSquare DF Prob>ChiSq

0.0020 3 1.0000

If the OR operator is added to this group of four, the similarity of the OR operator

with the remaining operators can be tested. Running the same tests yielded a probability

197

score of 0.1224, concluding the operators are similar, using an alpha of 0.05. Similar

results were obtained when XOR was added to the group of four operators, giving a

probability value of 0.1751. Finally, XOR and OR were compared, resulting in a

probability score of 0.8867. Though not statistically proven, some conclusions can be

drawn by observation. The XOR and OR operators likely yield a higher power score than

the other operators. This information may be useful when ordering the operators for use

in a constructive induction approach to virus detection. If the more useful operators are

used first, the computational complexity of the entire operation may be improved.

Since "NONE" was used as the operator for the selection method, the

implications are that selection did not produce a power score significantly different from

the power scores produced when using a constructive operator. This test should not be

used alone to discount the effects of construction over selection. Since the sample sizes

were so small, and sensitivity could be lost with nonparametric tests, further

investigations would be needed to conclude the effectiveness of this learning method.

The probability value of the Chi-square test for the label test is <.0001, implying a

difference exists in the score for power due to the label of self or nonself. Hypotheses

generated to detect nonself have a statistically better power score than those generated to

detect self.

In both cases of power and purity, results could be skewed by the fact that there

was a 4 to 1 ratio of self files to nonself files in the example set. The possible values of

power for nonself were {0%, 50%, 100%}; the possible values of power for self were

{0%, 12.5%, 25%, 37.5%, 50%, 62.5%, 75%, 87.5%, 100%}. The disparity between

these two sets could have artificially inflated the effects of the hypothesis label on power.

198

Since purity is a measure of how correctly the hypothesis classifies the examples, this

score could also be affected by the difference.

6.7.2.2. Regression Analyses

To confirm the findings from the nonparametric tests, a regression test was run,

which tested the "effects" of the input variables on the specified response of power.

Though the data set was not normally distributed, these regression tests are robust enough

to allow for non-normality. The results of these tests are derived from a model that

exhibited a "good fit."

There are three primary measures that assess a fitted model: MSE, R and F. A

"good" model will be significant, as indicated by a "large" value of F, exhibit a "small"

error component MSE and explain most of the variation in the responses by having a

"large" R2.

Table 33 - Analysis of Variance (ANOVA) Table for the Power Model

Source DF Sum of Squares
Mean

Square
F Ratio

Model 11 8.611177 0.782834 42.9359
Error 156 2.844289 0.018233 Prob>F

C Total 167 11.455466 <.0001
Label 1 6.2961494 345.3233 <.0001

The Analysis of Variance (ANOVA) table above shows the significance of this

model through the "large" F Ratio of 42.9359. This indicates at least one of the input

variables is contributing significantly to the model. The Mean Square Error (MSE)

provides a measure of the variability within the residuals and provides a measure of how

199

well the fitted responses match those observed. The table above shows the "small" error

value of 0.018. In the following table, the R2 value of 0.75 represents the proportion of

the variability within the observed responses that can be explained or accounted for by

the model. Additionally, developing a "best" model usually involves finding a model

that has the above characteristics and is "parsimonious", meaning it involves the fewest

parameters. It is difficult to just delete parameters, this process is often facilitated by

testing the addition or removal of the variables. [Hil98]

The model derived here is a "good" model, meaning it can be used to gain

insightful knowledge into the important factors affecting the power response. This could

be very useful in the application of constructive induction to virus detection. As stated

previously, the computational complexity of this learning method is extreme. A method,

such as regression can help pinpoint and guide the learning process by identifying early

in the process the important variables and the settings needed to optimize the desired

responses of high power and high purity.

Table 34 depicts the results of the effect test for the model. This test shows the

impact of variables on the response of power. The F test is used to determine if all

settings of a variable have the same effect. The null hypothesis states all settings have

equal means, and the alternative hypothesis states that at least two means are different.

The variable settings with "large" F ratios and "small" probabilities, of less than alpha,

reject the null hypothesis. Using an alpha of 0.05, the most significant effects are the

operator, method, and label. This indicates that at least one setting within each variable

has a different mean than the others. Further analyses, using the parameter estimates' t

tests indicated which settings were the most significant.

200

Table 34 - Effect Test for the Power Model

Source Nparm DF Sum of Squares F Ratio Prob>F

Test Case 2 2 0.018 0.519 0.5957

Operator 5 5 1.783 19.56 <.0001

Method 2 2 0.145 3.98 0.0204

Label 1 1 6.296 345.32 <.0001

Table 35 shows the parameter estimates for the variables and their settings, and

their tests of significance. Since the input variables are nominal, each term symbolizes a

particular variable setting compared to the rest of the settings for that variable [SAS95].

For example, the term "Operator[AND-XOR]" symbolizes the effect of the AND

operator compared to the group containing the rest of the operators. A t test is performed

which indicates the significance of that particular variable setting. This tests whether the

setting of a particular variable is statistically different from the other settings of that

variable. The null hypothesis states all settings are equal, and the alternative hypothesis

states that a particular setting is not equal. The variable settings with "large" t ratios and

"small" probabilities, of less than alpha, reject the null hypothesis. Using an alpha of

0.05, all of the operators and both of the label variables produced high t ratios, meaning

these terms are significantly different from each other. With an alpha of 0.10, the method

of chunking becomes significantly different than the other two generation methods. The

other generation methods and the specific test cases do not appear to be significantly

different from each other.

201

Table 35 - Regression Information for the Power Model

Summary of Fit

RSquare 0.751709
RSquare Adj 0.734201
Root Mean Square Error 0.135028
Mean of Response 0.385893
Observations (or Sum Wgts) 168

Parameter Estimates

Term Estimate Std Error t Ratio Prob>ltl

Intercept 0.4202101 0.011644 36.09 <.0001

TestCase[9-m -0.007323 0.015182 -0.48 0.6303

TestCasejlO-lll -0.007414 0.014863 -0.50 0.6186

Operator[AND-XORl -0.064471 0.025034 -2.58 0.0109

Operator[BEFORE-XORl -0.07446 0.025924 -2.87 0.0046

Operator[DISTANC-XORl -0.078363 0.026439 -2.96 0.0035

Operator[NONE-XORl -0.070195 0.025241 -2.78 0.0061

Operator[OR-XORl 0.1033423 0.020025 5.16 <.0001
MethodrCHUNKIN-SLIDING] -0.031237 0.016629 -1.88 0.0622

Method[EO SLID-SLIDING] -0.008616 0.015363 -0.56 0.5757

LabelfNONSELF-SELFl 0.2101124 0.011307 18.58 <.0001

Breaking the model down even further, additional analyses can be conducted.

The least squares means are predicted values from the specified model across the levels

of each variable setting, where the other variables are controlled by being set to neutral

values. The least squares means are the values to examine to see which levels produce

higher responses from power, holding the other variables constant [SAS95]. The

following three tables show the least squares mean scores for the operators, methods, and

labels. XOR and OR appear to give the largest power scores of all operators, sliding

window appears to give the highest power score of all methods, and hypotheses with the

nonself label appear to have higher power scores.

202

Table 36 - Least Squares Means for the Operators

Least Squares Means

Level Least Sq Mean Std Error Mean I

AND 0.342110 0.027985 0.30416

BEFORE 0.332121 0.029111 0.30909

DISTANCE 0.328219 0.029712 0.31190

NONE 0.336387 0.028284 0.30416

OR 0.509924 0.020420 0.46555

XOR 0.590728 0.024710 0.49781

Effect Test

Sum of Squares F Ratio DF Prob>F

10.3443 19.5647 5 <.0001 |

Table 37 - Least Squares Means for the Methods

Least Squares Means

Level Least Sq Mean Std Error Mean

CHUNKING 0.375345 0.021602 0.40357

EOSW 0.397965 0.019127 0.37942

SLE)ING_WINDO
W

0.446435 0.016673 0.38040

Effect Test

Sum of Squares F Ratio DF Prob>F

0.14544740 3.9887 2 0.0204

Table 38 - Least Squares Means for the Labels

Least Squares Means

Level Least Sq Mean Std Error Mean

NONSELF 0.616694 0.017767 0.64285

SELF 0.196469 0.014186 0.23171

Effect Test

Sum of Squares F Ratio DF Prob>F

6.2961494 345.3233 1 <.0001

203

6.7.3. Utilizing Process Optimization

In order to show the useful application of the process optimization techniques

discusses above, a case study of their utilization was simulated. Since insight was gained

about the effects of different operators on the response of power, this knowledge was

included in a simulation of MERCURY. This simulation only used the OR and XOR

operators to construct new hypotheses. The results from this simulation are presented

below.

Power of construction Power of construction
before optimization after optimization

22.6% self 25% self
66.9% nonself 83% nonself
31.5% overall 36.3% overall

The results show an increase of average power scores for both self and nonself

hypotheses. The overall weighted average also increased. Additionally, this optimized

simulation produced 18.4% fewer hypotheses. By knowing the effects of the OR and

XOR operators, they can be used more effectively in the inductive process. They

produced a better average, and decreased some of the computational growth. Though this

decrease is small, it represents only a small tidbit of a priori knowledge. If combined

with other pieces of knowledge, the computational growth could be reduced even further.

204

6.7.4. RSM Conclusions

The results of these tests provided evidence that statistical methods, like the ones

used in RSM processes, can provide empirical analysis and knowledge that could make

the constructive induction learning process more efficient. Although little insight could

be gleaned from the first group of tests cases, the second group of test cases was able to

demonstrate the capabilities of process optimization technique. Since the main

disadvantage of constructive induction is its computational explosion, these results

provide mathematically-based methods that could decrease its computational complexity,

by providing knowledge about the problem domain a priori.

Based on the knowledge obtained from the last three test cases, future runs of

MERCURY could be optimized by utilizing the sliding window method before other

methods. In addition, construction could begin with the XOR and OR operators,

followed by the others, if necessary. This could reduce the time and space explosions

explained in previous sections of this chapter.

6.8. Summary

This chapter presented the results of various test scenarios utilizing MERCURY.

These results were analyzed by the five performance dimensions of time, space, power

and purity, coverage and process optimization. Time and space were both recognized as

potential downsides to MERCURY; however, several optimization methods to future

205

code iterations and algorithms that could reduce these effects are presented in Chapter

Seven. Power and purity scores, in general, were shown to increase between selection and

construction, possibly indicating useful selection methods, operators, or constructive

rules. Although a statistically significant improvement between selection and

construction using the optimization techniques of RSM was not shown, other important

information was obtained through this analysis. These techniques were recognized as

potential "guidelines" for increasing the performance of a constructive induction learning

engine. RSM could provide the virus detection programmer a priori knowledge, resulting

in a better detection system. Further conclusions from these analyses are presented in

Chapter Seven.

206

7. Conclusions

7.1. Research Overview

This research integrated four different domains: computer virus detection, human

immunology, computer immunology and constructive induction. The goal of this research

was three-fold. First, a computer health model was defined that could possibly improve

the current "global" approach to computer viruses/This health model was based on the

public health system, and provided a high level view of a Computer Health System.

Second, a computer immune model was defined that could possibly improve the current

"local" approach to computer virus detection. This detection model was based on the

human immune system, and provided a high level view of an individual computer

immune system. Third, a detection model was developed, represented by the prototype

MERCURY. This model utilized the machine learning concept of constructive induction

to capture the human immune characteristic of self-adaptation. The work accomplished as

part of this investigation tested the primary hypotheses.

207

7.2. Research Hypotheses

Primary Hypotheses

1. The public health system is a useful model for a Computer Health

System for the global protection of computer system against viruses

2. The human immune system is a useful model for a virus detection

system on an individual computer system

3. Constructive induction provides a suitable learning mechanism for the

virus detector system of an individual computer system

The first two objectives of this research were to test the first two hypotheses to

determine if the public health system and the human immune system were useful models

for a Computer Health System and computer immune system, respectively. To

accomplish this objective, research in the areas of public health and human immunology

was conducted. The requirements, objectives and components of the models were also

evaluated. Both computer models are informal, explanatory models based on some

essential qualities of their respective systems. Due to the models' informalities, though,

not all of their aspects were explicitly stated.

Though the first two objectives were not formally tested, the first two hypotheses

can be supported. The Computer Health System was derived by analogy from an

effective system in an applicable domain. The computer immune system was also

derived by analogy, and its main functions of detection, adaptation and memory were

208

translated into the design of the prototype, MERCURY, and abstractly demonstrated in

its implementation.

The third objective of this research was to empirically test the third hypothesis.

This objective investigated whether constructive induction was suitable for virus

detection in a computer immune system. Testing was conducted utilizing MERCURY.

While MERCURY captures the essence of constructive induction, it does not fully

employ all the characteristics of a complete inductive engine. The analyses supported the

third hypothesis by failing to reject it, and by showing empirical evidence that

construction improved classification. In other words, MERCURY was not able to

validate, or refute, that constructive induction definitively provides a suitable learning

mechanism for the virus detector system of an individual computer system.

The results of these tests did provide empirical evidence and analytical knowledge

that could make the learning process more efficient. Since the main disadvantage of

constructive induction is its computational explosion, these results provided

mathematically based methods which could decrease its computational complexity.

These methods could improve the capabilities of a fully developed constructive induction

based virus detector, by providing knowledge about the problem domain and the system

parameters a priori. To confirm these findings, a process optimization simulation was

conducted to demonstrate the effectiveness of a priori knowledge applied to the virus

detection problem.

The third hypothesis was decomposed into smaller, more manageable, sub-

hypotheses. The first sub-hypothesis was the Virus Feature Hypothesis:

209

Virus Feature Hypothesis

Byte patterns can be used as the basis of a

constructive induction based computer virus detector.

Although current virus research stated byte patterns were useful features, it was

necessary to ensure constructive induction did not decrease detection capabilities. To

confirm this, MERCURY'S learning component was programmed to extract, manipulate,

and test byte patterns from various files. Testing concluded that the learning component,

using features composed of byte patterns, was able to detect self and nonself files with

varying degrees of accuracy. Therefore, it can be concluded that byte patterns can be

used as the basis of a constructive induction based computer virus detector.

The second sub-hypothesis was the Constructive Operator Hypothesis:

Constructive Operator Hypothesis

Logical and spatial operators can be used for

constructing new attributes for the computer virus detector.

Current virus research confirms the applicability of using relative and absolute

locations of virus characteristics to detect an infected file. This hypothesis validated that

the choice of operators combining these characteristics was adequate, better

distinguishing between infected and uninfected data. To confirm this, MERCURY'S

learning component was programmed to manipulate the byte patterns from various files

based on two types of operators, logical and spatial. Testing concluded that the learning

210

component, using logical and spatial operators, was able to detect self and nonself files

with varying degrees of accuracy. While the logical operators performed better in this

system, spatial operators should not be discounted. Further testing of these spatial

operators should be conducted. Therefore, it can be concluded that logical operators can

be used for constructing new features for the computer virus detector. More research is

required for spatial operators.

7.3. Research Implications

The results of analyzing MERCURY demonstrate an inherent lack of

representational power of computer virus byte patterns using selective induction methods.

Constructive induction provides new, potentially powerful, and often necessary

representations. However, the results of this research confirmed constructive induction's

main deficiency, the explosion in the number of hypotheses generated.

The effects of this deficiency can be improved by utilizing key pieces of

knowledge to guide construction. Process optimization through statistical techniques,

provides direct insight into these key pieces of knowledge. Many factors influence the

computational explosion of this system. Some of these are: feature size, file size, number

of selection methods, number of operators, number of constructions, and construction

rules. Examples of some guidelines for improving the performance of constructive

induction in a virus detector are: the ordering of the selection methods, the ordering of

the operators, the sequence of selection and construction, the appropriate time to

evaluate, and the appropriate hypotheses to evaluate. Knowledge about the virus domain,

211

such as characteristics of typical viruses and regularities in the byte patterns, also

provides guidance for effective construction. However, care must be taken to not

constrict or oversimplify the problem.

7.4. Research Limitations

Several factors limited aspects of this research. Due to the broadness of the four

research areas and the disparity of the concepts being intertwined, time was a limitation.

As proven in the subsequent section discussing future research topics, this problem

domain is without boundaries in a vast number of directions. This research focused on

the detection component of an individual computer immune system as part of a larger

Computer Health System. Since these computer immune models were informal models,

the validity of the models is limited to common sense and intuition.

Other limitations to this system were caused by hardware configuration and

software design constraints, such as processing speed and memory and limited data

structures. In addition, due to the computational complexity of this learning method, the

number of test cases, the number of generation methods, the number of operators, the

number of construction rules, and the number of constructions were all limited.

The results of testing and the conclusions drawn from them were also limited.

Due to the small file sizes and example set sizes, and the non-normal distribution of this

particular data, conclusions can not be absolutely validated. On the other hand, the

primary hypothesis for constructive induction applicability in the virus detection domain

can not be rejected. There is not enough evidence to support the claim that constructive

212

induction is the answer to virus detection. However, evidence suggest that through

empirical analyses and statistical techniques, improvements can be made over current

methods of virus detection

7.5. Future Research

7.5.1. Computer Immunology

Application of computer immune models to other domains. The Computer

Health System model and the computer immune model that were

developed in this research can be utilized in other computer security

domains. These models provide global scoped and locally driven

protection for computer networks and individual computers. The

applicability of these models to intrusion detection, change detection, and

malicious user detection should be explored. An additional goal of this

research should be the integration of the various domains through these

models.

Model refinement. This research provided an overview of the Computer

Health System, as discussed in Chapter Three. Further model refinement

is needed to expand components, specify interfaces between the global

Computer Health System and the local computer immune model, and

specifying the communication protocols between systems.

213

Expanding the computer immune model. This research focused on

specifying the detection component of the computer immune model. The

system analysis, virus elimination, and file repair tasks need to further

specification. Current antivirus techniques, discussed in Chapter Two, can

be incorporated into the model to handle these tasks.

Other aspects of immune system models. This research investigated the

use of the human immune system's defenses against intracellular and

extracellular infection as a means of detecting computer viruses. Certain

immunological aspects were not fully addressed in the model

specification, requiring future work. These areas include autoimmunity,

allergy, B-cell and T-cell interaction, and the role of macrophages.

Additionally, a new concept of immune system operation, the danger

theory, should be investigated. This theory claims that the immune system

does not work through detection of self and nonself, but rather through

detection of dangerous nonself through a costimulatory signal produced by

antigen presenting cells [Ric96, Pen96].

7.5.2. Machine Learning

Different forms of machine learning. The use of constructive induction in

this research was not the only from of machine learning available. As

discussed in Section 2.5, three current forms of machine learning, neural

networks, genetic algorithms, and intelligent agents should be studied for

214

their applicability to this domain. These forms of learning should be aided

by the empirical evidence that that was collected and utilized in this

research.

User intervention. The current structure of MERCURY does not allow

the user to intervene into either the learning or virus detection processes.

Future research should investigate means for correcting overlearning or

underlearning by HEC, proactively adding self to the knowledge base, and

handling unclassified files.

Constructive Induction Code Optimization. Several aspects of the

constructive induction process can be optimized based upon the results of

this research.

• Data structure improvements. The hypotheses are currently stored

in a flat list structure. This structure is traversed several times to

construct hypotheses and evaluation. The system could be

improved if an index into the features of the hypotheses was

maintained. With such an index, it would be possible to search

through the example file once to determine coverage, power and

purity. Coverage is currently determined independently of the

score for power and purity.

• Inclusion of domain specific bias from either empirical evidence or

antivirus researchers. Very little virus specific bias is included in

HEC. The empirical results of this investigation and other biases

could be used to guide the choice of hypotheses used for

215

construction, the operators used to construct, and the selection of

features from the files. Relaxing these biases would help

determine their affect on learning. This research should attempt to

reduce the average execution time and memory requirements.

• Extracting Signatures. HEC does not attempt to find the minimal

number of hypotheses necessary to classify the examples, with

high power and purity. Determining the subset of hypotheses

needed to classify self and nonself is needed. In order to determine

this, a mapping between the examples and the classifying

hypotheses are needed. Additionally, analyses of the "outlier

hypotheses" could be conducted to determine if they possess

highly effective characteristics.

• Testing the predictive capability. Several tests exist for validating

the machine learning process and determining the predictive

capability of the detectors. These tests should be used inside HEC

when evaluating candidates for signatures.

Future RSM applications. Regression analysis is one response surface

methodology (RSM) technique used to investigate the relationships

between process input parameters and process results. Additional

techniques could be used, such as steepest ascent, which allows the

experimenter to "scale" the heights of a response surface, in order to find

the optimal region. This "hill climbing" technique is especially useful

when there is more than one response variable which needs to be

216

optimized, or there are additional constraints on the system. Design of

experiments can also be used on different system variables to improve the

application of the RSM techniques. Using differing levels of feature size,

file size, etc, can give more insight into which variables can be optimized.

7.5.3. Virus Detection

Different types of viral detection. This research explored the use of bytes

as features for a constructive induction based computer virus detector.

Other antiviral techniques use heuristics and system call analysis to

determine if a computer is infected. A study of MERCURY'S techniques

should be investigated to provide a multilayered defense for the computer

immune system, akin to the multilayered defense provided by the innate

and adaptive immune system of the human body.

Different types of viruses. MERCURY is designed to detect file infector

viruses. Boot sector, polymorphic, and stealth viruses should be

researched to determine methodologies to integrate detectors for these

viruses with MERCURY.

Dynamic virus scanning. MERCURY currently detects only when

invoked by the user. In order to detect viruses as they infect a file,

dynamic virus scanning is needed.

217

This study began by building two models: a Computer Health System and an

individual computer immune system. Once the modeling for the two systems was

complete, the prototype of MERCURY was designed and developed to capture the

essence of the individual computer immune system. The overall results provided an

analysis of constructive induction approach applied to the virus detection domain, as well

as areas for optimizing this learning method and reducing its computational complexity.

This research recognized specific areas of improvement in machine learning that

could be applied to current methods of virus detection, in order to improve performance.

It also presented the incorporation of this constructive induction component into an

individual computer's immune system, and further incorporated this system into an

overall global picture of computer health.

218

Appendix A -- Source Code

The source code for MERCURY is not included as part of this document. Those

interested in obtaining a copy of the source code should direct their requests to:

Dr. Gregg Gunsch

AFIT/ENG
2950 P Street

WPAFB, OH 45433-7765

gregg.gunsch @ afit.af.mil

219

Bibliography

[AAV97] Dr. Solomon's Virus Central "All About Viruses 97." Available Online at
http://www.drsolomon.com/vircen/vanalyse/va002.html

[ABKS94] Aytug, Haldun, Siddhartha Bhattacharyya, Gary J. Koehler and Jane L.
Snowdon. "A Review of Machine Learning in Scheduling." IEEE
Transactions on Engineering Management, 41(2): 165-171, May 1994.

[A1190] Allen, Arnold O. Probability, Statistics, and Queuing Theory With
Computer Science Applications. Second Edition. Academic Press:
Boston, 1990.

[Ayr96] Ayres, Stephen M., M.D. Health Care in the United States. Chicago:
American Library Association, 1996.

[B1F90] Blanchard, Benjamin S. and Wolter J. Fabrycky. Systems Engineering
and Analysis. New Jersey: Prentice Hall, 1990.

[Boe88] Boehm, Barry W. "A Spiral Model of Software Development and
Enhancement." IEEE Computer, pgs 61-72, May 1988.

[BSL96] Benjamini, Eli, Geoffrey Sunshine and Sidney Leskowitz. Immunology:
A Short Course. New York: Wiley-Liss, 1996.

[Cas97] Casti, John L., Would-be Worlds. New York: John Wiley & Sons, 1997.
[Che97] Chess, David. "The Future of Viruses on the Internet." In 7th Virus

Bulletin International Conference. Abingdon, England: Virus Bulletin,
1997.

[CLR90] Cormen, Thomas H, Charles E. Leiserson, and Ronald L. Rivest.
Introduction to Algorithms. Cambridge: MIT Press, 1990.

[DeB92] DeRaedt, Luc and Maurice Bruynooghe. "Interactive Concept-Learning
and Constructive Inductance by Analogy." Machine Learning, 9:107-150,
1992.

[DFH96] D'heseller, Patrik, Stephanie Forrest, and Paul Helman. "An
Immunological Approach to Change Detection: Algorithms, Analysis and
Implications." Proceedings of the 1996 IEEE Symposium on Security and
Privacy. IEEE Computer Society Press, 1996.

[DiM81] Dietterich, Thomas G and Ryszard S. Michalski. "Inductive Learning of
Structural Descriptions: Evaluation Criteria and Comparative Review of
Selected Methods." Artificial Intelligence, 16:257-294, 1981.

[Elg96] Elgert, Klaus D. Immunology: Understanding the Immune System. New
York: Wiley-Liss, 1996.

[FHS97] Forrest, Stephanie, Steven A. Hofmeyr, and Anil Somayaji. "Computer
immunology." Communications of the ACM, 40(10):88 - 96, October
1997.

[FHSL96] Forrest, Stephanie, Steven A. Hofmeyr, Anil Somayaji, and Thomas A.
Longstaff. "A Sense of Self for Unix Processes." Proceedings of the 1996
IEEE Symposium on Security and Privacy, 120-128, 1996.

[FJSP93] Forrest, Stephanie, Brenda Javornik, Robert E. Smith and Alan S.
Perelson. "Using Genetic Algorithms to Explore Pattern Recognition in
the Immune System." 1993.

220

[Gun91] Gunsch, Gregg H. Opportunistic Constructive Inductance: Using
Fragments of Domain Knowledge to Guide Construction. PhD thesis,
University of Illinois at Urbana-Champaign, 1991.

[Guy81] Guyton, Arthur C. Textbook of Medical Physiology. Philadephia:
Saunders, 1981.

[Hau87] Haussler, David. "Bias, Version Spaces and Valiant's Learning
Framework." In Proceedings of the Fourth International Workshop on
Machine Learning, pages 324-336, Irvine, CA, June 1987.

[HFS97] Hofmeyr, Steven A., Stephanie Forrest, and Anil Somayaji. "Intrusion
Detection using Sequrnces of System Calls." Department of Computer
Science, University of New Mexico, December 1997.

[Hil98] Hill, Raymond, Maj, US AF. "Overview - What is RSM?" Class notes
from OPER 683 Response Surface Methodology. Summer 1998.

[IBM98] IBM. "IBM and Symantec Combine Forces." IBM Press Release, May
1998.

[Jan93] Janeway, Charles A. Jr. "How the Immune System Recognizes Invaders."
Scientific American, pages 73-79, September 1993.

[Jon92] Jonas, Steven, M.D. An Introduction to the US Heath Care System. 3r

Edition. New York: Springer Publishing Company, 1992.
[Kas99] Kaspersky, Eugene. "Viral Analysis Texts: Web version." Metropolitan

Network BBS, Inc, 1999.
[KeA94] Kephart, Jeffrey O. and William C. Arnold. "Automatic Extraction of

Computer Virus Signatures." In R. Ford, editor, 4th Virus Bulletin
International Conference, pages 179-194. Abingdon, England: Virus
Bulletin, 1994.

[Kep94] Kephart, Jeffrey O. "A Biologically Inspired Immune System for
Computers." Rodney A. Brooks and Pattie Maes, editors, Artificial Life PV,
Proceedings of the Fourth International Workshop on the Synthesis and
Simulation of Living Systems, pp. 130-139. Cambridge, Mass: MIT Press,
1994.

[KSCW97] Kephart, Jeffrey O., Greogry B. Sorkin, David M. Chess, and Steve R.
White. "Fighting Computer Viruses." ScientificAmerican, pp. 88-93,
November 1997.

[KSSW97] Kephart, Jeffrey O., Gregory B. Sorkin, Morton Swimmer, and Steve R.
White. "Blueprint for a Computer Immune System." In Proceedings of the
7th Virus Bulletin International Conference. Abingdon, England: Virus
Bulletin, 1997.

[LaS95] Langley, Pat and Herbert A. Simon. "Applications of Machine Learning
and Rule Induction." Communications of the ACM, 38(11):55-64,
November 1995.

[Lud98] Ludwig, Mark. The Giant Black Book of Computer Viruses, 2nd Edition.
Arizona: American Eagle Publications, 1998.

[LVM98] Lamont, Gary B., David A. Van Veldhuizen, and Robert E Marmelstein, A
Distributed Architecture for a Self-Adaptive Computer Virus Immune
System. White paper. Air Force Institute of Technology, 1998.

[MaM95] Maloof, Marcus A. and Ryszard S. Michalski. "A Partial-Memory

221

Incremental Learning Methodology and its Application to Intrusion
Detection." In Proceedings of the 7th IEEE International Conference on
Tools with Artificial Intelligence, Herndon, VA, 1995.

[MVL98] Marmelstein, Robert E., David A. Van Veldhuizen, and Gary B. Lamont.
Modeling & Analysis of Computer Immune Systems Using Evolutionary
Algorithms. White paper, Air Force Institute of Technology, February
1998.

[NCSA96] NCSA Virus Lab, "Frequently Asked Questions (FAQ) VA." pp. 7-11,
November 29,1996.

[Nos93] Nossal, Sir Gustav J. V. "Life, Death and the Immune System." Scientific
American,, pages 53-62, September 1993.

[OUSD96] Office of the Under Secretary of Defense for Acquisition and Technology.
"Information Warfare - Defense: Appendix D Organizational Models."
Report of the Defense Science Board Task Force on Information Warfare
- Defense (IW-D). 1996. Available Online at http://jya.com/iwd-d.htm.

[Pen96] Pennisi, Elizabeth. "Tetering on the Brink of Danger." Science, pages
1665-1667,22 March 1996.

[Pro92] Provost, Foster John. Policies for the Selection of Bias in Inductive
Machine Learning. PhD thesis, University of Pittsburgh, 1992.

[Qui86] Quinlan, J.R. "Induction of Decision Trees." Machine Learning, 1:81-
106,1986.

[RBM98] Roitt, Ivan, Jonathan Brostoff and David Male. Immunology. Fifth
Edition. London: Mosby, 1998.

[RBP91] Rumbaugh, James, Michael Blaha, William Premerlani, Frederick Eddy,
and William Lorensen. Object-Oriented Modeling and Design. New
Jersey: Prentice-Hall, 1991.

[Ren90] Rendell, Larry. "Learning Hard Concepts." Computational Intelligence.
Vol 6, No. 4,1990.

[Ric96] Richardson, Sarah. "The End of Self." Discover, 17(4): 80-88, April
1996.

[SAS95] SAS Institute Inc. JMP Statistics and Graphics Guide. SAS: Cary, NC,
1995.

[ShG96] Shaw, Mary, and David Garlan. Software Architecture. New Jersey:
Prentice-Hall, 1996.

[Shr96] Shrobe, Howard. "ARPATech '96 Information Survivability Briefing."
Presented at the ARPATech '96 Systems and Technology Symposium.
Atlanta, Georgia, May 1996.

[Ste93] Steinman, Lawrence. "Autimmune Disease." Scientific American, pp.
107-114, September 1993.

[TKS96] Tesauro, Gerald, Jeffrey O. Kephart and Gregory B. Sorkin. "Neural
Networks for Computer Virus Recognition." IEEE Expert, ll(4):5-6,
1996.

[Tur97] Turnock, Bernard J. Public Health: What It Is and How It Works.
Maryland: Aspen Publishers, 1997.

[WCC89] White, Steve R., Jimmy Kuo Chengi and David M. Chess. "Coping with
Computer Viruses and Related Problems." IBM Thomas J. Watson

222

Research Center, Research Report Number RC 14405, pp. 1-8, January 30,
1989.

[WeC93] Weissman, Irving L. and Max D. Cooper. "How the Immune System
Develops." Scientific American, pages 65-71, September 1993.

[WFP96] White, Gregory B., Eric A. Fisch and Udo W. Pooch. Computer System
and Network Security. New York: CRC Press, 1996.

[Win92] Winston, Patrick Henry. Artificial Intelligence. New York: Addison-
Wesley, 1992.

[WnM94] Wnek, Janusz and Ryszard S. Michalski. "Hypothesis-Driven
Constructive Induction in AQ17-HCI." Machine Learning, 14:139-168,
1994.

[Zin96] Zinkernagel, Rolf M. "Immunolgy Taught by Viruses." Science, 271:173-
177, 1996.

223

Vitas

Captain Cardinale, , graduated from the George

Washington University in 1994. Prior to coming to AFJT, she had several duties in the

communications and information career field. Captain Cardinale's first assignment was

to the AETC Training Support Squadron, Randolph AFB, Texas, where she developed

computer-based courseware used in undergraduate flying training. In 1996, she became

the chief of the network administration section for the squadron. Following graduation

from AFJT, Captain Cardinale will be assigned to the Air Force Technical Applications

Center (AFTAC) at Patrick AFB, FL. She will be working in the Systems Integration

Management Office, responsible for benchmarking AFTAC s current architecture

requirements and building a roadmap for their future.

Lieutenant O'Donnell, , graduated from the United States

Air Force Academy in May of 1997. His first assignment was to the Air Force Institute

of Technology. Following graduation from AFTT, Lieutenant O'Donnell will be assigned

to the 552nd Computer Systems Group at Tinker AFB, OK. He will be working with the

software engineering process improvement flight.

224

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

March 1999

3. REPORT TYPE AND DATES COVERED

Master's Thesis
4. TITLE AND SUBTITLE

A Constructive Induction Approach to Computer Immunology

6. AUTHOR(S)

Capt Kelley J. Cardinale
Lt Hugh M. O'Donnell

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology
Department of Electrical and Computer Engineering
2950 P Street
WPAFB, OH 45433-7765

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Capt Freeman Kilpatrick
AFOSR/NM
801 North Randoplh Street Room 732
Arlington, VA 22203-1977
C703^ 696-6565

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GCS/ENG/99M-02

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

Advisor: Lt Col Gregg Gunsch
(937) 255 -6565 x4281 (DSN) 785-6565 x4281
Gregg. Gunsch@afit. af. mil
12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
With the increasing birth rate of new viruses and the rise in interConnectivity and interoperability among computers, the
burden of detecting and destroying computer viruses is severe. This research integrated four domains: computer virus
detection, human immunology, computer immunology and an automated form of machine learning called constructive
induction. First, a Computer Health System, based on the public health system, was defined to improve the "global"
approach to computer virus protection. Second, a computer immune model, based on the human immune system, was
defined to improve the "local" approach to virus detection. Third, the detection component of this computer immune model
was developed, represented by the prototype MERCURY. This model utilized constructive induction, capturing the human
immune characteristics of detection, self-adaptation and memory.

The results of analyzing MERCURY demonstrate a lack of representational power of computer virus byte patterns using
selective induction. Therefore, constructive induction is needed to provide new, potentially powerful, and often necessary
representations. However, the results confirmed constructive induction's main deficiency, the explosion in the number of
hypotheses generated. The effects of this deficiency can be improved by utilizing key pieces of knowledge to guide
construction. Process optimization through statistical techniques provides insight into this knowledge.

14. SUBJECT TERMS
virus detection, antivirus, constructive induction, machine learning, classification, public health
system, computer immunology, response surface methodology, process optimization

17. SECURITY CLASSIFICATION
OF REPORT

Unclassifed

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassifed

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassifed

15. NUMBER OF PAGES

242
16. PRICE CODE

20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

